溶藻弧菌ZJ-T小RNA srvg17985缺失突变株的构建及该小RNA功能的初步分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Construction of knock-out mutant of sRNA srvg17985 in Vibrio alginolyticus ZJ-T and its preliminary function analysis
  • 作者:邓益琴 ; 陈偿 ; 苏友禄 ; 程长洪 ; 马红玲 ; 郭志勋 ; 冯娟
  • 英文作者:DENG Yiqin;CHEN Chang;SU Youlu;CEHNG Changhong;MA Hongling;GUO Zhixun;FENG Juan;Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs;South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences;Xisha and Nansha Ocean Observation and Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences;
  • 关键词:溶藻弧菌 ; 小RNA ; srvg17985 ; 缺失突变株 ; 功能分析
  • 英文关键词:Vibrio alginolyticus;;sRNA srvg17985;;knock-out mutant;;function analysis
  • 中文刊名:NFSC
  • 英文刊名:South China Fisheries Science
  • 机构:中国水产科学研究院南海水产研究所农业农村部南海渔业资源开发利用重点实验室;中国科学院南海海洋研究所西沙南沙深海海洋环境观测研究站;
  • 出版日期:2019-02-05
  • 出版单位:南方水产科学
  • 年:2019
  • 期:v.15
  • 基金:中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助(2017YB27,2017YB01);; 联合资助开放课题基金(2018011004);; 中国水产科学研究院基本科研业务费专项资金(2017HY-ZD1007);; 广东省“扬帆计划”引进创新团队(2016YT03H038);; 国家自然科学基金项目(31502210)
  • 语种:中文;
  • 页:NFSC201901006
  • 页数:12
  • CN:01
  • ISSN:44-1683/S
  • 分类号:44-55
摘要
利用同源重组技术构建了溶藻弧菌(Vibrio alginolyticus) ZJ-T小RNA srvg17985的缺失突变株,并比较研究了野生株和srvg17985突变株在LBS中的生长特性、运动性、胞外蛋白酶分泌、对铁的吸收利用、对抗生素的抗性以及生长代谢等生物学特性。结果表明,小RNA srvg17985缺失后不影响溶藻弧菌在LBS中的生长、运动性、胞外蛋白酶分泌、对铁的吸收利用、对抗生素的抗性以及对测定的多数碳源、氮源的代谢;但srvg17985突变株对昆布多糖(laminarin)、果胶(pectin)以及二羟基丙酮(dihydroxyacetone)的利用增强,并转变为可利用丙氨酸-天冬氨酸(Ala-Asp)作为单一氮源。
        We constructed the sRNA srvg17985 knock-out mutant in Vibrio alginolyticus ZJ-T by using homologous recombination, so as to compare the biological characteristics of growth in LBS medium, motility, extracellular protease secretion, iron utilization, antibiotic resistance and metabolism between the wild type and the mutant strains. The results show that the absence of sRNA srvg17985 did not affect the growth in LBS medium, motility, extracellular protease secretion, iron utilization, antibiotic resistance and most of the tested carbon and nitrogen sources metabolism in V. alginolyticus. However, the mutant showed better utilization of laminarin, pectin and dihydroxyaceton, and gained the ability to utilize alanine-aspartic acid(Ala-Asp) as the sole nitrogen source.
引文
[1]STORZ G, VOGEL J, WASSARMAN K M. Regulation by small RNAs in bacteria:expanding frontiers[J]. Mol Cell, 2011, 43(6):880-891.
    [2]WAGNER E G, ROMBY P. Small RNAs in bacteria and archaea:who they are, what they do, and how they do it[J]. Adv Genet,2015,90:133-208.
    [3]LIU J M, CAMILLI A. A broadening world of bacterial small RNAs[J]. Curr Opin Microbiol, 2010, 13(1):18-23.
    [4]NGUYEN A N, JACQ A. Small RNAs in the Vibrionaceae:an ocean still to be explored[J]. Wiley Interdisc ip Rev RNA, 2014,5(3):381-392.
    [5]HUANG L, HU J, SU Y, et al. Genome-wide detection of predicted non-coding RNAs related to the adhesion process in Vibrio alginolyticus using high-throughput sequencing[J]. Front Microbiol, 2016,7:619.
    [6]DENG Y, SU Y, LIU S, et al. Identification of a novel small RNA srvg23535 in Vibrio alginolyticus ZJ-T and its characterization with phenotype microarray technology[J]. Front Microbiol, 2018,9:1-13.
    [7]MUKHERJI A, SCHROEDER S, DEYLING C, et al. An unusual source of Vibrio alginolyticus-associated otitis:prolonged colonization or freshwater exposure?[J]. Arch Otolaryngol Head Neck Surg, 2000, 126(6):790-791.
    [8]JACOBS SLIFKA K M, NEWTON A E, MAHON B E. Vibrio alginolyticus infections in the USA, 1988-2012[J]. Epidemiol Infect, 2017, 145(7):1491-1499.
    [9]CHANG C, JIN X, CHAOQUN H. Phenotypic and genetic differences between opaque and translucent colonies of Vibrio alginolyticus[J]. Biofouling, 2009, 25(6):525-531.
    [10]SOLANO C, ECHEVERZ M, LAS A I. Biofilm dispersion and quorum sensing[J]. Curr Opin Microbiol, 2014, 18(4):96-104.
    [11]ALONSO C R. Post-transcriptional gene regulation via RNA control[J]. Brief Funct Genomics, 2013, 12(1):1-2.
    [12]WANG Z,SUN X,ZHAO Y,et al. Evolution of gene regulation during transcription and translation[J]. Genome Biol Evol, 2015,7(4):1155-1167.
    [13]HUANG X, CHEN C, REN C, et al. Identification and characterization of a locus putatively involved in colanic acid biosynthesis in Vibrio alginolyticus ZJ-51[J]. Biofouling, 2018, 34(1):1-14.
    [14]LE R F, BINESSE J, SAULNIER D, et al. Construction of a Vibrio splendidus mutant lacking the metalloprotease gene vsm by use of a novel counterselectable suicide vector[J]. Appl Environ Microbiol,2007, 73(3):777-784.
    [15]NGUYEN A N, DISCONZI E, CHARRIERE G M, et al. csrB gene duplication drives the evolution of redundant regulatory pathways controlling expression of the major toxic secreted metalloproteases in Vibrio tasmaniensis LGP32[J]. mSphere,2018, 3(6):e00582-18.
    [16]VAL M E, SKOVGAARD O, DUCOS-GALAND M, et al. Gerome engineering in Vibrio cholerae:a feasible approach to address biological issues[J]. PLoS genetics, 2012, 8(1):e1002472.
    [17]DENG Y Q, CHEN C, ZHAO Z, et al. The RNA chaperone Hfq is involved in colony morphology, nutrient utilization and oxidative and envelope stress response in Vibrio alginolyticus[J]. PLoS One, 2016, 11(9):e0163689.
    [18]BOCHNER B R, GADZINSKI P, PANOMITROS E. Phenotype microarrays for high-throughput phenotypic testing and assay of gene function[J]. Genome Res, 2001, 11(7):1246-1255.
    [19]GRIPENLAND J, NETTERLING S, LOH E, et al. RNAs:regulators of bacterial virulence[J]. Nat Rev Microbiol, 2010, 8(12):857-866.
    [20]HAIKO J, WESTERLUND-WIKSTROM B. The role of the bacterial flagellum in adhesion and virulence[J]. Biology(Basel),2013,2(4):1242-1267.
    [21]PAJUELO D, LEE C T, ROIG F J, et al. Novel host-specific iron acquisition system in the zoonotic pathogen Vibrio vulnificus[J].Environ Microbiol, 2015, 17(6):2076-2089.
    [22]CHANG S C, LEE C Y. OpaR and RpoS are positive regulators of a virulence factor PrtA in Vibrio parahaemolyticus[J]. Microbiology, 2018, 164(2):221-231.
    [23]RYAN D, OJHA U K, JAISWAL S, et al. The small RNA DsrA influences the acid tolerance response and virulence of Salmonella enterica serovar Typhimurium[J]. Front Microbiol, 2016, 7:599.
    [24]GUO Y, QUIROGA C,CHEN Q, et al. RalR(a DNase)and RalA(a small RNA)form a typeⅠtoxin-antitoxin system in Escherichia coli[J]. Nucleic Acids Res, 2014, 42(10):6448-6462.
    [25]MOON K, SIX D A, LEE H J, et al. Complex transcriptional and post-transcriptional regulation of an enzyme for lipopolysaccharide modification[J]. Mol Microbiol, 2013, 89(1):52-64.
    [26]BEISEL C L, STORZ G. The base-pairing RNA spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in Escherichia coli[J]. Mol Cell, 2011, 41(3):286-297.
    [27]URBANOWSKI M L, STAUFFER L T, STAUFFER G V. The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli[J]. Mol Microbiol, 2000, 37(4):856-868.
    [28]PULVERMACHER S C, STAUFFER L T, STAUFFER G V.Role of the Escherichia coli Hfq protein in GcvB regulation of oppA and dppA mRNAs[J]. Microbiology, 2009, 155(Pt 1):115-123.
    [29]ALDERKAMP A C, van RIJSSEL M, BOLHUIS H. Characterization of marine bacteria and the activity of their enzyme systems involved in degradation of the algal storage glucan laminarin[J].FEMS Microbiol Ecol, 2007, 59(1):108-117.
    [30]MOHNEN D. Pectin structure and biosynthesis[J]. Curr Opin Plant Biol, 2008, 11(3):266-277.
    [31]DENG Y, CHEN C, ZHAO Z, et al. Complete genome sequence of Vibrio alginolyticus ZJ-T[J]. Genome Announc, 2016, 4(5):e00912-e00916.
    [32]杜青平,王倩,曹立创,等.悬浮物变化引起细菌JS17生长曲线的波动规律[J].广东工业大学学报,2012, 29(3):77-80.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.