磁改性海泡石催化过二硫酸盐降解双酚A
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Degradation of bisphenol A by persulfate catalyzed with magnetic-modified sepiolite
  • 作者:徐西蒙 ; 宗绍燕 ; 刘丹
  • 英文作者:XU Ximeng;ZONG Shaoyan;LIU Dan;Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University;
  • 关键词:海泡石 ; 磁性纳米Fe_3O_4 ; 过硫酸盐 ; 双酚A ; 催化降解
  • 英文关键词:sepiolite;;magnetic nano Fe_3O_4;;persulfate;;bisphenol A;;catalytic degradation
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:西南交通大学地球科学与环境工程学院;
  • 出版日期:2018-11-07 16:15
  • 出版单位:哈尔滨工业大学学报
  • 年:2019
  • 期:v.51
  • 语种:中文;
  • 页:HEBX201908010
  • 页数:7
  • CN:08
  • ISSN:23-1235/T
  • 分类号:66-72
摘要
为有效去除水中内分泌干扰物,采用共沉淀法合成海泡石负载纳米Fe_3O_4催化剂,催化过二硫酸盐去除水中双酚A(BPA).通过X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、氮气吸脱附仪等对催化剂进行表征,考察不同温度和溶液pH对催化剂吸附性能的影响,研究催化剂和过硫酸盐投量对BPA去除效果的影响.结果表明,高比表面积的催化剂可对BPA有效吸附,平衡吸附量随着温度升高而降低,室温下可达11.6 mg/g.当催化剂投量为2 g/L、过硫酸钾(PDS)投量为4 000 mg/L、溶液pH为5时,体系可在20 min内完全降解30 mg/L的BPA.催化剂可通过外加磁场进行回收,且重复使用5次之后,60 min降解率仅下降了2.7%.机理推断认为体系内BPA的降解过程由吸附-氧化耦合反应实现,被吸附的BPA分子可在催化剂表面被生成的自由基原位降解.本研究首次将磁改性海泡石作为催化过硫酸盐的高级氧化体系催化剂使用,并认为吸附-氧化耦合式的降解途径可以有效提高自由基利用率,为去除水中痕量有机污染物的催化氧化体系设计提供了新的思路和方向.
        To effectively remove the endocrine disturbing chemicals in water, nano Fe_3O_4 supported on the sepiolite was prepared by the method of co-precipitation to catalyze persulfate for bisphenol A(BPA) removal. The catalyst was characterized by XRD, XPS, SEM, TEM, and N_2 sorption experiments. The adsorption capacity toward BPA was studied with different solution pH values and temperatures, and effects of catalyst and persulfate doses on BPA removal efficiency were investigated. Results show that the catalyst with high specific surface area could effectively adsorb BPA, and the equilibrium absorption amount decreased with the increase of temperature, which could reach 11.6 mg/g at room temperature. The BPA(30 mg/L) could be degraded completely within 20 minutes with the catalyst dose of 2 g/L, PDS dose of 4 000 mg/L, and solution pH of 5. The catalyst could be recycled by external magnetic field, and the removal efficiency within 60 minutes decreased only 2.7% after 5 times of recycle. The BPA degradation was accomplished by a coupled process of adsorption and oxidation, and the adsorbed BPA molecular could be oxidized in-situ on the catalyst surface, where the radicals were produced. In this study, the magnetic-modified sepiolite was applied as persulfate activator in the advanced oxidation process for the first time. The coupled process of adsorption and oxidation was considered beneficial to increase the radical efficiency, which could provide a new avenue for trace-level contaminants removal from the point of catalytic oxidation system design.
引文
[1]VANDENBERG L N,LUTHI D,QUINERLY D.Plastic bodies in a plastic world:Multi-disciplinary approaches to study endocrine disrupting chemicals[J].Journal of Cleaner Production,2017,140:373.DOI:10.1016/j.jclepro.2015.01.071
    [2]AKKARI M,ARANDA P,BELVER C,et al.ZnO/sepiolite heterostructured materials for solar photocatalytic degradation of pharmaceuticals in wastewater[J].Applied Clay Science,2018,156:104.DOI:10.1016/j.clay.2018.01.021
    [3]于生慧.纳米环境矿物材料的制备及重金属处理研究[D].合肥:中国科学技术大学,2016YU Shenghui.Preparation of nano-mineral ecomaterials and their applications in heavy metals treatment[D].Hefei:University of Science and Technology of China,2016
    [4]杨欣洁.新型磁性复合有机海泡石对双酚A的吸附试验研究[D].长沙:湖南大学,2015YANG Xinjie.Adsorption of bisphenol A from aqueous solutions onto new magnetic composite organic sepiolite[D].Changsha:Hunan University,2015
    [5]LIU Haicheng,CHEN Wei,LIU Cheng,et al.Magnetic mesoporous clay adsorbent:Preparation,characterization and adsorption capacity for atrazine[J].Microporous & Mesoporous Materials,2014,194(7):72.DOI:10.1016/j.micromeso.2014.03.038
    [6]LI Wenhui,WU Xiaofeng,LI Shuangde,et al.Magnetic porous Fe3O4/carbon octahedra derived from iron-based metal-organic framework as heterogeneous Fenton-like catalyst[J].Applied Surface Science,2018,436:252.DOI:10.1016/j.apsusc.2017.11.151
    [7]ZHOU Yang,XIAO Bo,LIU Shouqing,et al.Photo-Fenton degradation of ammonia via a manganese-iron double-active component catalyst of graphene-manganese ferrite under visible light[J].Chemical Engineering Journal,2016,283(12):266.DOI:10.1016/j.cej.2015.07.049
    [8]ANGIN D,KOSE T E,SELENGIL U.Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff[J].Applied Surface Science,2013,280(5):705.DOI:10.1016/j.apsusc.2013.05.046
    [9]DONG Yi,WU Deyi,CHEN Xuechu,et al.Adsorption of bisphenol A from water by surfactant-modified zeolite[J].Journal of Colloid & Interface Science,2010,348(2):585.DOI:10.1016/j.jcis.2010.04.074
    [10]PARK J,REGALBUTO J R.A simple,accurate determination of oxide pzc and the strong buffering effect of oxide surfaces at incipient wetness[J].Journal of Colloid & Interface Science,1995,175(1):239.DOI:10.1006/jcis.1995.1452
    [11]颜靖.有机改性海泡石吸附水中酸性品红的试验研究[D].长沙:湖南大学,2013YAN Jing.Adsorption of acid fuchsin from aqueous solutions onto organic sepiolite[D].Changsha:Hunan University,2013
    [12]徐西蒙.FeOCl催化剂用于非均相Fenton体系催化降解水中微量有机物[D].上海:华东理工大学,2013XU Ximeng.FeOCl catalysts for the heterogeneous Fenton degradation of trace organic contaminants[D].Shanghai:East China University of Science and Technology,2013
    [13]BUXTON G V,GREENSTOCK C L,HELMAN W P,et al.Critical review of rate constants for reactions of hydrated electrons[J].Journal of Physical & Chemical Reference Data,1988,17(2):513.DOI:10.1063/1.555805
    [14]杨基先,王蕾,郭海娟,等.Fe3O4-H2O2类Fenton体系催化降解苯酚[J].哈尔滨工业大学学报,2014,46(12):39YANG Jixian,WANG Lei,GUO Haijuan,et al.Catalyzed degradation of phenol by Fe3O4-H2O2 Fenton-like system[J].Journal of Harbin Institute of Technology,2014,46(12):39.DOI:10.11918/j.issn.0367-6234.2014.12.007
    [15]DO Q C,KIM D G,KO S O.Catalytic activity enhancement of a Fe3O4@SiO2 yolk-shell structure for oxidative degradation of acetaminophen by decoration with copper[J].Journal of Cleaner Production,2018,172:1243.DOI:10.1016/j.jclepro.2017.10.246
    [16]MUNOZ M,PEDRO Z M D,CASAS J A,et al.Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation:A review[J].Applied Catalysis B Environmental,2015,176/177:249.DOI:10.1016/j.apcatb.2015.04.003
    [17]赵莹,任月明,张慧玉,等.GO/CoFe2O4催化过硫酸盐降解邻苯二甲酸二丁酯效能[J].哈尔滨工业大学学报,2017,49(8):31ZHAO Ying,REN Yueming,ZHANG Huiyu,et al.Efficiency of dibutyl phthalate degradation by GO/CoFe2O4 catalytic oxidation of peroxymonosulfate[J].Journal of Harbin Institute of Technology,2017,49(8):31.DOI:10.11918/j.issn.0367-6234.201612067
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.