HTPE钝感推进剂的子弹撞击和快速烤燃特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bullet Impact and Fast cookoff characteristics of HTPE Insensitive Solid Propellant
  • 作者:吕玺 ; 庞维强 ; 李军强 ; 王可 ; 刘芳莉 ; 樊学忠 ; 付小龙 ; 李焕 ; 杨建
  • 英文作者:Lü Xi;PANG Wei-qiang;LI Jun-qiang;WANG Ke;LIU Fang-li;FAN Xue-zhong;FU Xiao-long;LI Huan;YANG Jian;Chinese People′s Liberation Army;Xi′an Modern Chemistry Research Institute;
  • 关键词:物理化学 ; 钝感推进剂 ; HTPE推进剂 ; 子弹撞击 ; 快速烤燃 ; 易损特性
  • 英文关键词:physical chemistry;;insensitive propellant;;HTPE propellant;;bullet impact;;fast cook-off;;vulnerability
  • 中文刊名:BGXB
  • 英文刊名:Chinese Journal of Explosives & Propellants
  • 机构:中国人民解放军驻845厂军代室;西安近代化学研究所;
  • 出版日期:2019-02-15
  • 出版单位:火炸药学报
  • 年:2019
  • 期:v.42;No.203
  • 基金:“十三五”装备预研共用技术项目(41420030302);; 国防科工局重点实验室支撑项目
  • 语种:中文;
  • 页:BGXB201901015
  • 页数:5
  • CN:01
  • ISSN:61-1310/TJ
  • 分类号:87-91
摘要
理论计算了HTPE钝感推进剂(PET/AP/Al质量比为18∶64∶18)的质量比冲、特征速度和绝热燃烧温度,测试了推进剂的爆热和密度,依据GJB772A-97 601.2方法和GJB772A-97 602.1方法,测定了推进剂的机械感度,并与HTPB推进剂进行了比较,评估了HTPE钝感推进剂的子弹撞击和快速烤燃特性。结果表明,HTPE推进剂在6.86MPa下的理论比冲为268.0s,实测爆热为7456J/g,实测密度为1.812g/cm~3,均大于HTPB推进剂;HTPE推进剂在低压下(1MPa)可稳定燃烧,并且具有较低的燃速压强指数,在1~18MPa下n≤0.42;推进剂具有较低的外界刺激感度,其中摩擦感度为0,撞击感度(特性落高H_(50))大于77cm,12.7cm子弹撞击试验和快速烤燃试验均表现为燃烧反应,具有较低的易损特性。
        The theoretical specific impulse, characteristic velocity and combustion temperature of HTPE insensitive solid propellant(mass ratio of PET∶AP∶Al is 18∶64∶18) were calculated and designed by means of minimum free energy principle, the heat of explosion and density of propellants were detected, and the mechanical sensitivity(impact sensitivity and friction sensitivity) were evaluated according to GJB772 A-97 601.2 and GJB772 A-97 602.1, and were compared with those of HTPB propellant. The bullet impact and fast cook-off properties of HTPE propellant were evaluated. The theoretical impulse of HTPE propellant under 6.86 MPa is 268.0 s, calculated heat of detonation is 7465 J/g, and density is 1.812 g/cm~3, which are all higher than those of HTPB propellant. The results show that HTPE propellant can steadily burned under low pressure(1 MPa), its pressure exponent is less than 0.42 at the pressure range from 1 MPa to 18 MPa. HTPE propellant has low sensitivity under the stimuli, its friction sensitivity and impact sensitivity are 0 and higher than 77 cm, respectively, the 12.7 mm bullet impact and fast cook-off tests of HTPE propellant show combustion reaction and low vulnerability.
引文
[1] 李小柱,裴养卫. 固体火箭发动机枪击低易损性试验研究[J]. 弹箭与制导学报,2000,20(2):39-42. LI Xiao-zhu,PEI Yang-wei. The experimental research of bullet impact properties for solid rocket engine [J]. Journal of Projectiles, Rockets, Missiles and Guidance,2000,20(2):39-42.
    [2] 戴耀松. 国外战术导弹固体火箭发动机低易损性技术分析[J]. 推进技术,1998,19(1):98-101. DAI Yao-song. The low-vulnerability of solid rocket engine for tactical missile[J]. Journal of Propulsion Technology, 1998,19(1):98-101.
    [3] Pang Wei-qiang, Li Jun-qiang,DeLuca L T, et al. Effects of different deceleration agents on the properties of hydroxyl terminated polyether (HTPE)-based composite solid propellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 2017,16(2):125-138.
    [4] 唐桂芳,王晓峰,李巍. 浇注PBX的低易损性能研究[J]. 含能材料,2003,11(3):163-165. TANG Gui-fang, WANG Xiao-feng, LI WEI. Study on low vulnerability of cast PBX[J]. Chinese Journal of Energetic Materials, 2003,11(3):163-165.
    [5] 闫大庆,徐丹丹,师经国. 固体推进剂粘合剂HTPE研究及其分子设计思想概述[J]. 固体火箭技术,2009,32 (6):644-650. YAN Da-qing,XU Dan-dan,SHI Jing-guo. A review of solid propellant binder HTPE development and its molecular design philosophy [J]. Journal of Solid Rocket Technology,2009,32 (6):644-650.
    [6] 俞统昌,王晓峰. 国外不敏感弹药危险性评估试验标准[S]. 西安:中国兵器工业第二〇四研究所,2008.
    [7] 李晋庆. 低易损炸药的评价方法[J].火炸药学报,1992,22(1):13-18. LI Jin-qing. Evaluation method of low vulnerability explosive[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao),1992(1):13-18.
    [8] 曹欣茂. 外军不敏感炸药发展评述[J]. 火炸药学报,1999,22(2):15-18. CAO Xin-mao. The development of unsensitivity explosives in foreign army[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao),1999,22(2):15-18.
    [9] 智小琦,胡双启,肖志华,等.密封条件对纯化RDX快速烤燃响应特性的影响[J].火炸药学报, 2010,33(1): 31-33. ZHI Xiao-qi, HU Shuang-qi, XIAO Zhi-hua, et al. Effect of sealing conditions on fast cook-off response properties of passive RDX[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2010,33(1):31-33.
    [10] 魏祥庚,刘佩进,何国强,等. HTPB和NEPE固体推进剂枪击低易损性实验研究[J]. 弹箭与制导学报,2005, 25(4):714-716. WEI Xiang-geng,LIU Pei-jin,HE Guo-qiang,et al. Experimental research on the low vulnerability of HTPB and NEPE propellant[J]. Journal of Projectiles, Rockets, Missiles and Guidance,2005,25(4):714-716.
    [11] 庞维强, 张晓宏, 樊学忠, 等. 含Cs盐的HTPB/AP/Al复合推进剂特性研究[J]. 固体火箭技术,2011,34(5): 619-622. PANG Wei-qiang, ZHANG Xiao-hong, FAN Xue-zhong, et al. Study on properties of HTPB - based composite propellant with cesium salt [J]. Journal of Solid Rocket Technology,2011,34(5): 619-622.
    [12] 廖林泉, 胥会祥, 李勇宏, 等. HTPB推进剂危险性实验研究[J]. 火炸药学报,2010,33(4):28-31. LIAO Lin-quan, XU Hui-xiang, LI Yong-hong, et al. Experimental study on hazard of HTPB propellants[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2010,33(4):28-31.
    [13] Rao K P C, Sikder A K, Kukarni M A, et al. Studies on N-Butyl nitroxyethylnitramine (N-BuNENA): Synthesis, characterisation and propellant evaluations[J]. Propellants, Explosives, Pyrotechnics,2004,29: 93-98.
    [14] 刘运飞, 庞维强, 谢五喜, 等. TKX-50对HTPE推进剂能量特性的影响及应用可行性[J]. 推进技术,2017, 38(2): 2851-2856. LIU Yun-fei, PANG Wei-qiang, XIE Wu-xi, et al. Effects of TKX-50 on energy of HTPE propellant and application feasibility analysis[J]. Journal of Propulsion Technology, 2017, 38(2): 2851-2856.
    [15] Komai I, Sato W. Reaction mechanism in slow cook-off test of GAP-AP propellants [C]//Insensitive Munitions and Energetic Materials Symposium (IMEMTS). Bristol: [s.n.],2006: 24-28.
    [16] 陈中娥, 唐承志, 赵孝彬. 固体推进剂慢速烤燃行为与热分解特性的关系研究[J]. 含能材料, 2005,13(6): 393-396. CHEN Zhong-e, TANG Cheng-zhi, ZHAO Xiao-bin. Relationship between slow cook-off behavior and thermal decomposition characteristics of solid propellant[J]. Chinese Journal of Energetic Materials, 2005,13(6):393-396.
    [17] 杨后文. 复合固体推进剂烤燃特性的实验研究与数值模拟[D]. 南京:南京理工大学,2015.
    [18] Caro R I. Bellerby J M. Behavior of hydroxyl-terminated polyether (HTPE) composite rocket propellants in slow cook-off [J]. International Journal of Energetic Materials and Chemical Propulsion, 2008,7(3):171-185.
    [19] 杨筱, 智小琦, 杨宝良, 等. 装药尺寸及结构对HTPE推进剂烤燃特性的影响[J]. 火炸药学报, 2016, 39(6): 84-89. YANG Xiao, ZHI Xiao-qi, YANG Bao-liang, et al. Influences of charging size and structure on cook-off characteristics of HTPE propellant[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2016, 39(6): 84-89.
    [20] Fu Xiao-long, Fan Xue-zhong, Ju Xue-hai, et al. Molecular dynamic simulations on the interaction between an HTPE polymer and energetic plasticizers in a solid propellant[J]. RSC Advances, 2015, 5: 52844-52851.
    [21] Fisher M J. HTPE propellants mature over last decade [J]. The Johns Hopkins University Chemical Propulsion Information Agency,2004(2):4-5.
    [22] Comfort T, Shanholtz C, Fletcher G. Progress in HTPE propellants[C]//Proceeding of 39th Annual Gun and Ammunition. Missiles and Rockets Conference and Exhibition. Baltimore: MD, 2004: 13-16.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.