3D打印多孔钽种植体对骨整合影响的实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:In vivo study of 3D printed porous tantalum implant on osseointegration
  • 作者:苏可欣 ; 季平 ; 王涵 ; 李林林 ; 苏雷震 ; 王超
  • 英文作者:Su Kexin;Ji Ping;Wang Han;Li Linlin;Su Leizhen;Wang Chao;Dept.of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education;
  • 关键词:多孔钽 ; 3D打印 ; 骨整合 ; 种植修复
  • 英文关键词:porous tantalum;;3D printing;;osseointegration;;implant repair
  • 中文刊名:HXKQ
  • 英文刊名:West China Journal of Stomatology
  • 机构:重庆医科大学附属口腔医院口腔颌面外科,口腔疾病与生物医学重庆市重点实验室,重庆市高校市级口腔生物医学工程重点实验室;
  • 出版日期:2018-06-01
  • 出版单位:华西口腔医学杂志
  • 年:2018
  • 期:v.36
  • 基金:国家自然科学基金青年科学基金(11402042);; 重庆市基础与前沿研究计划(CSTC2015jcyj A10027);; 重庆市科委社会民生一般项目(CSTC2015shmszx10008);; 重庆市卫生计生委面上项目(2017MSXMD73);; 2016年重庆高校创新团队建设计划(CXTDG201602006)~~
  • 语种:中文;
  • 页:HXKQ201803015
  • 页数:5
  • CN:03
  • ISSN:51-1169/R
  • 分类号:65-69
摘要
目的研究多孔钽及多孔钛种植体对骨整合的影响。方法通过计算机辅助设计方法建模,采用3D打印技术制备两种微孔参数相同的多孔材料种植体:多孔钽及多孔钛。在24只新西兰大白兔双侧股骨外踝处建立骨缺损模型,每只动物左右侧缺损随机分组,分别用多孔钽(实验组)和多孔钛(对照组)种植体进行修复。种植体植入后2、4、8周取材,进行大体观察和亚甲基蓝-酸性品红染色,观测种植体和骨界面的骨整合情况,采用推出实验测试种植体-骨界面结合强度。结果术后2、4、8周,两组材料界面的新生骨组织逐渐增加,出现新生骨小梁并向材料孔隙内生长;两组的成骨情况及种植体-骨组织界面结合强度的差异无统计学意义(P>0.05)。结论 3D打印的多孔钽能与骨组织形成早期的生物结合,具有与多孔钛相当的骨整合能力。
        Objective This work aims to investigate the effect of porous tantalum and porous titanium on osseointegration. Methods Two kinds of porous materials with same microporous parameters, namely, porous tantalum and porous titanium, were fabricated by computer-aided design(CAD) modeling and 3 D printing technology. A defect model was established in 24 New Zealand white rabbits in the bilateral femoral lateral malleolus at the left and right side of each animal. Then, animals were randomly divided into two groups, and bone defects were repaired by porous tantalum and porous titanium(experimental and control groups, respectively). Animals were sacrificed at two, four, and eight weeks after implantation. Gross observation and methylene blue-acid fuchsin staining were used to observe osseointegration of the implant and bone interface, and the osseointegration strength of implant bone interface was tested by push-out test. Results At two, four, and eight weeks after operation, the new bone tissue in the two groups increased gradually, and new bone trabecula appeared and grew into the pores of the materials. No significant difference(P>0.05) in osteogenesis and the strength of implant bone tissue interface between the two groups was observed. Conclusion 3 D printed porous tantalum implants, which exhibit comparable osseointegration capabilities to porous titanium implants, can form an early biological combination with bone tissue.
引文
[1]Chen L,Dai H,Zhou Y,et al.Porous,single crystalline titanium nitride nanoplates grown on carbon fibers:excellent counter electrodes for low-cost,high performance,fibershaped dye-sensitized solar cells[J].Chem Commun:Camb,2014,50(92):14321-14324.
    [2]刘洪臣,路荣建.新型多孔钽人工种植牙[J].中华老年口腔医学杂志,2016,15(1):41-44.Liu HC,Lu RJ.New type porous tantalum dental implant[J].Chin J Geriatric Dent,2016,15(1):41-44.
    [3]Lu T,Wen J,Qian S,et al.Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bonelike elastic modulus[J].Biomaterials,2015,51:173-183.
    [4]Ryan G,Pandit A,Apatsidis DP.Fabrication methods of porous metals for use in orthopaedic applications[J].Biomaterials,2006,27(13):2651-2670.
    [5]Liu Y,Bao C,Wismeijer D,et al.The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology[J].Mater Sci Eng C Mater Biol Appl,2015,49:323-329.
    [6]Balla VK,Banerjee S,Bose S,et al.Direct laser processing of a tantalum coating on titanium for bone replacement structures[J].Acta Biomaterialia,2010(6):2329-2334.
    [7]Shimko DA,Shimko VF,Sander EA,et al.Effect of porosity on the fluid flow characteristics and mechanical properties of tantalum scaffolds[J].J Biomed Mater Res Part B Appl Biomater,2005,73(2):315-324.
    [8]Karageorgiou V,Kaplan D.Porosity of 3D biomaterial scaffolds and osteogenesis[J].Biomaterials,2005,26(27):5474-5491.
    [9]Guldberg RE,Duvall CL,Peister A,et al.3D imaging of tissue integration with porous biomaterials[J].Biomaterials,2008,29(28):3757-3761.
    [10]R?nold HJ,Lyngstadaas SP,Ellingsen JE.Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test[J].Biomaterials,2003,24(25):4559-4564.
    [11]Traini T,Mangano C,Sammons RL,et al.Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants[J].Dent Mater,2008,24(11):1525-1533.
    [12]Zhang Y,Zheng Y,Li Y,et al.Tantalum nitride-decorated titanium with enhanced resistance to microbiologically induced corrosion and mechanical property for dental application[J].PLo S One,2015,10(6):e0130774.
    [13]Moroni L,de Wijn JR,van Blitterswijk CA.3D fiber-deposited scaffolds for tissue engineering:influence of pores geometry and architecture on dynamic mechanical properties[J].Biomaterials,2006,27(7):974-985.
    [14]Xiu P,Jia Z,Lv J,et al.Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface[J].ACS Appl Mater Interfaces,2016,8(28):17964-17975.
    [15]Inglam S,Chantarapanich N,Suebnukarn S,et al.Biomechanical evaluation of a novel porous-structure implant:finite element study[J].Int J Oral Maxillofac Implants,2013,28(2):e48-e56.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.