H_2O和O_2对DBD降解高浓度SF_6影响的实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experiment of Effect of H_2O and O_2 on Degradation of High Concentration SF_6 by Dielectric Barrier Discharge
  • 作者:张英 ; 李亚龙 ; 崔兆仑 ; 肖焓艳 ; 张晓星
  • 英文作者:ZHANG Ying;LI Yalong;CUI Zhaolun;XIAO Hanyan;ZHANG Xiaoxing;Scientific Research Institute of Electric Power,Guizhou Power Grid Company Ltd.;School of Electrical Engineering and Automation, Wuhan University;State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University;
  • 关键词:介质阻挡放电(DBD) ; 降解 ; SF6 ; 降解率 ; H2O ; O2
  • 英文关键词:dielectric barrier discharge(DBD);;degradation;;SF6;;degradation rate;;H2O;;O2
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:贵州电网有限责任公司电力科学研究院;武汉大学电气与自动化学院;输配电装备及系统安全与新技术国家重点实验室(重庆大学);
  • 出版日期:2019-02-20 16:41
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.315
  • 基金:中国南方电网有限责任公司科技项目(GZKJXM20160017);; 中国博士后科学基金(2017M623314XB);; 国家自然科学基金面上项目(51777144)~~
  • 语种:中文;
  • 页:GDYJ201902022
  • 页数:6
  • CN:02
  • ISSN:42-1239/TM
  • 分类号:182-187
摘要
随着SF_6在电力行业中的应用越来越广泛,年排放量也达到了相当大的规模,由于其具有高GWP值,对SF_6降解后无害化处理就显得尤为重要。通过自行设计的DBD等离子体反应器对体积分数为2%的SF_6进行流动降解处理,分别分析了加H_2O和O_2对SF_6降解效率和降解产物的影响。研究表明,在单独加H_2O或O_2或两者都加时均能极大提高SF_6的降解率,使2%的高浓度SF_6降解率从60%提高到96%以上;在添加0.5%的H_2O和2%的O_2协同作用下,在50 mL/min的体积流量下SF_6降解率达到了98.2%。通过GC-MS和FTIR检测结果显示H_2O的参与使SF_6降解过程中倾向于生成SO_2,O_2的参与使SF_6降解过程中倾向于生成SO_2F2,为调节降解产物提供了研究方向。
        With the increasingly application of SF_6 in the power industry, the annual emissions have reached a considerable scale. Because of its high global warming potential(GWP) value, the harmless treatment of SF_6 after degradation is important. In this paper, the SF_6 with a concentration of 2% was degraded by a self-designed DBD plasma reactor under flowing conditions. The effects of adding H_2O and O_2 on the degradation efficiency and products of SF_6 were analyzed. Studies show that when H_2O or O_2 is added alone or when both are added, the degradation rate of SF_6 can be greatly increased, and the degradation rate of high concentration SF_6(2%) is increased from 60% to more than 96%; Under the addition of 0.5% H_2O and 2% O_2, the degradation rate of SF_6 reaches 98.2% at a flow rate of 50 ml/min. The results of GC-MS and FTIR show that the participation of H_2O tends to generate SO_2 during the degradation of SF_6, and the involvement of O_2 tends to generate SO_2F2, which provide a research direction for the regulation of degradation products.
引文
[1]张英,张晓星,李军卫,等.基于光声光谱法的SF6气体分解组分在线监测技术[J].高电压技术,2016,42(9):2995-3002.ZHANG Ying,ZHANG Xiaoxing,LI Junwei,et al.On-line monitoring technology of SF6 gas decomposition components based on photoacoustic spectroscopy[J].High Voltage Engineering,2016,42(9):2995-3002.
    [2]唐炬,赵天成,姚强,等.气压对SF6局部过热分解的影响特性[J].高电压技术,2018,44(5):1520-1527.TANG Ju,ZHAO Tiancheng,YAO Qiang,et al.Influence characteristics of pressure on the partial over-thermal decomposition of SF6[J].High Voltage Engineering,2018,44(5):1520-1527.
    [3]TANG J,ZENG F,PAN J,et al.Correlation analysis between formation processes of SF6 decomposed components and partial discharge qualities[J].IEEE Transactions on Dielectrics&Electrical Insulation,2013,20(3):864-875.
    [4]ZHANG X,ZHANG J,JIA Y,et al.TiO2 nanotube array sensor for detecting the SF6 decomposition product SO2[J].Sensors,2012,12(3):3302-3313.
    [5]MATSUI R,CVITKOVITCH D.History of atmospheric SF6 from1973 to 2008[J].Atmospheric Chemistry&Physics,2010,10(21):10305-10320.
    [6]SULBAEK A M P,KYTE M,ANDERSEN S T,et al.Atmospheric chemistry of(CF3)2CF-CN:a replacement compound for the most potent industrial greenhouse gas,SF6[J].Environmental Science&Technology,2017,51(3):1321-1329.
    [7]邵涛,章程,王瑞雪,等.大气压脉冲气体放电与等离子体应用[J].高电压技术,2016,42(3):685-706.SHAO Tao,ZHANG Cheng,WANG Ruixue,et al.Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J].High Voltage Engineering,2016,42(3):685-706.
    [8]李和平,于达仁,孙文廷,等.大气压放电等离子体研究进展综述[J].高电压技术,2016,42(12):3697-3727.LI Heping,YU Daren,SUN Wenting,et al.State-of-the-art of atmospheric discharge plasmas[J].High Voltage Engineering,2016,42(12):3697-3727.
    [9]JIANG N,LU N,SHANG K,et al.Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation[J].Journal of Hazardous Materials,2013,262(22):387-393.
    [10]ZHANG H,LI K,SHU C,et al.Enhancement of styrene removal using a novel double-tube dielectric barrier discharge(DDBD)reactor[J].Chemical Engineering Journal,2014,256(8):107-118.
    [11]LEE H M,CHANG M B,WU K Y.Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric pressure plasmas[J].Journal of the Air&Waste Management Association,2004,54(8):960-970.
    [12]沈燕,黄丽,张仁熙,等.介质阻挡放电降解SF6的研究[J].环境化学,2007,26(3):275-279.SHEN Yan,HUANG Li,ZHANG Renxi,et al.Decomposition of SF6by dielectric barriers discharge[J].Environmental Chemistry,2007,26(3):275-279.
    [13]ZHUANG Q,CLEMENTS B,MCFARLAN A,et al.Decomposition of the most potent greenhouse gas(GHG)sulphur hexafluoride(SF6)using a dielectric barrier discharge(DBD)plasma[J].Canadian Journal of Chemical Engineering,2014,92(1):32-35.
    [14]ZHANG X,XIAO H,HU X,et al.Effects of background gas on sulfur hexafluoride removal by atmospheric dielectric barrier discharge plasma[J].Aip Advances,2016,6(11):495202-3855.
    [15]XIAO H,ZHANG X,HU X,et al.Experimental and simulation analysis on by-products of treatment of SF6 using dielectric barrier discharge[J].IEEE Transactions on Dielectrics&Electrical Insulation,2017,24(3):1617-1624.
    [16]张晓星,胡雄雄,肖焓艳.介质阻挡放电等离子体降解SF6的实验与仿真研究[J].中国电机工程学报,2017,37(8):2455-2464.ZHANG Xiaoxing,HU Xiongxiong,XIAO Hanyan.Experimental and simulation study on degradation of SF6 by dielectric barrier discharge plasma[J].Proceedings of the CSEE,2017,37(8):2455-2464.
    [17]肖焓艳,张晓星,肖淞,等.环境介质对介质阻挡放电降解SF6影响的实验[J].电工技术学报,2017,32(20):20-27.XIAO Hanyan,ZHANG Xiaoxing,XIAO Song,et al.Experiment of effects of ambient medium on sulfur hexafluoride degradation for a double dielectric barrier discharge reactor[J].Transactions of China Electrotechnical Society,2017,32(20):20-27.
    [18]KIM J H,CHO C H,SHIN D H,et al.Abatement of fluorinated compounds using a 2.45 GHz microwave plasma torch with a reverse vortex plasma reactor[J].Journal of Hazardous Materials,2015,294:41-46.
    [19]RYAN K R,PLUMB I C.Gas-phase combination reactions of SF4 and SF5 with F in plasmas of SF6[J].Plasma Chemistry&Plasma Processing,1988,8(3):281-291.
    [20]HERRON J T.A critical review of the chemical kinetics of SF4,SF5,and S2F10 in the gas phase[J].International Journal of Chemical Kinetics,1987,19(2):129-142.
    [21]ULTEE C J.The homogeneous recombination rate constant of F atoms at room temperature[J].Chemical Physics Letters,1977,46(2):366-367.
    [22]PLUMB I C,RYAN K R.Gas-phase reactions of SF5,SF2,and SOFwith O(3,P):their significance in plasma processing[J].Plasma Chemistry&Plasma Processing,1986,6(3):247-258.
    [23]RADOIU M,HUSSAIN S.Microwave plasma removal of sulphur hexafluoride[J].Journal of Hazardous Materials,2009,164(1):39-45.
    [24]VAN BRUNT R J,HERRON J T.Plasma chemical model for decomposition of SF6 in a negative glow corona discharge[J].Physica Scripta,2007,1994(T53):9.
    [25]TANG J,LIU F,ZHANG X,et al.Partial discharge recognition through an analysis of SF6 decomposition products part 1:decomposition characteristics of SF6 under four different partial discharges[J].IEEE Transactions on Dielectrics&Electrical Insulation,2012,19(1):29-36.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.