喀斯特山区野生葡萄幼苗的抗旱性评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Drought resistance evaluation of wild Vitis seedlings in Karst region
  • 作者:任菲宏 ; 仲伟敏 ; 张文娥 ; 胡景铭 ; 潘学军
  • 英文作者:REN Feihong;ZHONG Weimin;ZHANG Wen'e;HU Jingming;PAN Xuejun;Guizhou Engineering Research Center for Fruit Crops,Agricultural College,Guizhou University;
  • 关键词:野生葡萄 ; 抗旱性 ; 隶属函数法 ; 主成分分析法 ; 喀斯特山区
  • 英文关键词:wild Vitis;;drought resistance;;membership function;;principal component analysis;;Karst region
  • 中文刊名:XBNY
  • 英文刊名:Journal of Northwest A & F University(Natural Science Edition)
  • 机构:贵州大学农学院/贵州省果树工程技术研究中心;
  • 出版日期:2018-07-06 13:25
  • 出版单位:西北农林科技大学学报(自然科学版)
  • 年:2019
  • 期:v.47;No.340
  • 基金:国家自然科学基金项目(31560546);; 贵州省高层次创新型人才培养项目(黔科合人才[2016]4038号)
  • 语种:中文;
  • 页:XBNY201901013
  • 页数:9
  • CN:01
  • ISSN:61-1390/S
  • 分类号:104-112
摘要
【目的】探讨喀斯特山区野生葡萄幼苗的抗旱性,为野生葡萄种质资源的利用及抗旱葡萄基因的挖掘提供参考。【方法】以原产贵州的葡萄属4个野生种7个单株,即毛葡萄(Vitis quinquangularis Rehd.)‘花溪-9’、‘花溪-4’、‘农院-11’和‘福泉-1’,腺枝葡萄(Vitis adenoclada Hand-Mazz)‘茂兰-11’,葛藟葡萄(Vitis flexuosa Thunb.)‘习水-4’和刺葡萄(Vitis davidii Fo3x)‘农院-1’为试材,以欧洲葡萄(Vitis vinifera L.)‘红地球’和欧美杂种(Hybrid of V.viniferra×V.labrusca)‘水晶’2个栽培品种为对照,采用盆栽法,设置干旱胁迫8,16,24,32和40d共5个试验处理,观察植株的形态表现,并测定相关的生理指标,综合隶属函数法、主成分分析法评价野生葡萄各单株的抗旱性。【结果】干旱胁迫导致葡萄叶片失绿和翻卷,旱害症状和相对电导率(REC)明显增加,叶水势和叶片相对含水量(RWC)明显降低。其中,在干旱胁迫8d时,所有葡萄材料均未表现旱害症状;胁迫40d后,除‘花溪-9’和‘习水-4’表现为2级旱害症状外,其余试材均表现出3级旱害症状。随胁迫时间的延长,葡萄叶片相对含水量逐渐下降,与胁迫8d相比,‘习水-4’和‘花溪-9’的降幅最小,分别为9.82%和9.63%,而‘茂兰-11’和‘红地球’的降幅最大,分别为13.60%和12.94%。随胁迫时间的延长,葡萄叶片水势逐渐下降,与胁迫8d相比,‘茂兰-11’和‘红地球’在胁迫40d后叶水势降幅最大,分别达2.10和2.05MPa,而‘农院-11’和‘花溪-9’叶水势降幅最小,分别为1.18和1.19 MPa。干旱胁迫8d时,葡萄叶片REC值为13.19%~21.75%,随胁迫程度加深REC不断增大,干旱胁迫40d后葡萄叶片REC升高了38.28%~42.09%,其中‘花溪-9’叶片的REC最低,为51.80%,‘红地球’叶片的REC最大,为62.73%,二者相差10.93%。供试9份葡萄材料的抗旱性表现为‘花溪-9’>‘习水-4’>‘农院-11’>‘福泉-1’>‘农院-1’>‘水晶’>‘花溪-4’>‘茂兰-11’>‘红地球’。【结论】野生毛葡萄‘花溪-9’抗旱能力最强,葛藟葡萄‘习水-4’和毛葡萄‘福泉-1’、‘农院-11’也较为抗旱,可作为抗旱葡萄育种的种质资源。
        【Objective】This study explored the drought resistance of wild Vitis seedlings in Karst region to provide reference for the utilization of wild grape germplasm resources and the mining of droughtresistant grape genes.【Method】Seven individuals of four wild Vitis verities originated in Guizhou including‘Huaxi-9',‘Huaxi-4',‘Nongyuan-11',‘Fuquan-1'(Vitis quinquangularis Rehd.),‘Maolan-11'(Vitis adenoclada Hand-Mazz),‘Xishui-4'(Vitis flexuosa Thunb.)and‘Nongyuan-1'(Vitis davidii Fo3x)were selected and‘Red globe'(V.vinifera L.)and‘Crystal'(Hybrid of V.vinifera×V.labrusca)were used as control.Five stress treatments of 8,16,24,32 and 40dwere set up for pot experiments to studymorphology,and morphological and physiological characteristics related to water stress.Then,the drought resistance was evaluated by comprehensive membership function and principal component analyses.【Result】Drought stress caused losing of green color and folding of leaves,significantly increased the symptoms of drought and electrical conductivity(REC),and significantly decreased the leaf water potential and relative water content(RWC).At 8dwithout watering,all grapes showed no drought symptoms,while two materials(‘Huaxi-9'and ‘Xishui-4')showed grade 2drought damage symptoms and the rest showed grade 3drought damage symptoms 40 dafter stress.With the extension of stress time,the relative water content of leaves decreased gradually.‘Xishui-4'and‘Huaxi-9'decreased the least by 9.82% and 9.63%compared to 8dafter stress,while ‘Maolan-11'and ‘Red globe'decreased the most by 13.60% and12.94%.With the extension of stress time,the leaf water potential gradually decreased.Compared with 8d drought stress,the leaf water potentials of‘Maolan-11'and ‘Red globe'declined the most by 2.10and2.05 MPa,while those of‘Nongyuan-11'and‘Huaxi-9'decreased the smallest by 1.18 and 1.19 MPa,respectively.Leaf conductivity of grape(REC)was 13.19%-21.75% under 8ddrought stress,and it increased continuously by 38.28%-42.09% under 40 ddrought stress.‘Huaxi-9'had the lowest REC of51.80%,while‘Red globe'had the largest of 62.73%,with the difference of 10.93%.Comprehensive evaluation showed that the drought resistance was in the order of‘Huaxi-9'>‘Xishui-4'>‘Nongyuan-11'>‘Fuquan-1'>‘Nongyuan-1'>‘Crystal'>‘Huaxi-4'>‘Maolan-11'>‘Red globe'.【Conclusion】V.quinquangularis‘Huaxi-9'had the strongest drought resistance,followed by V.flexuosa ‘Xishui-4'and V.quinquangularis‘Fuquan-1'and‘Nongyuan-11'.They all can be used as drought grape breeding germplasm resources.
引文
[1]潘学军,李德燕,张文娥,等.贵州葡萄属野生种植物资源调查分析[J].果树学报,2010,27(6):898-901,1073.Pan X J,Li D Y,Zhang W E,et al.Investigation and analysis of wild Vitis resources in Guizhou province[J].Journal of Fruit Science,2010,27(6):898-901,1073.
    [2]姜建福,魏伟,樊秀彩,等.中国野生葡萄分布状况与保护空缺分析[J].果树学报,2011,28(3):413-417,550.Jiang J F,Wei W,Fan X C,et al.Distribution and GAP analysis of Chinese wild grape species[J].Journal of Fruit Science,2011,28(3):413-417,550.
    [3]潘学军,张文娥,杨秀永,等.贵州喀斯特山区野生葡萄实生苗抗旱机理研究[J].西北植物学报,2010,30(5):955-961.Pan X J,Zhang W E,Yang X Y,et al.Drought-resistance mechanism of four kinds of wild Vitis seedlings in Karst regions of Guizhou province[J].Acta Botanica Boreali-Occidentalia Sinica,2010,30(5):955-961.
    [4]郑先波,申炎龙,史江莉,等.中国野生葡萄果皮和叶片白藜芦醇含量测定[J].果树学报,2016,33(9):1092-1102.Zheng X B,Shen Y L,Shi J L,et al.Determination of resveratrol in berry skins and leaves of Chinese wild grapevines[J].Journal of Fruit Science,2016,33(9):1092-1102.
    [5]严静,江雨,樊秀彩,等.中国11种野生葡萄果皮中黄烷-3-醇类物质的组成及含量[J].中国农业科学,2017,50(5):890-905.Yan J,Jiang Y,Fan X C,et al.Composition and concentration of flavan-3-ols in berry peel of 11Chinese wild grape species[J].Scientia Agricultura Sinica,2017,50(5):890-905.
    [6]江雨,孟江飞,刘崇怀,等.中国野生葡萄果实基本品质、酚类物质含量及其抗氧化活性分析[J].食品科学,2017,38(7):142-148.Jiang Y,Meng J F,Liu C H,et al.Quality characteristics,phenolics content and antioxidant activity of Chinese wild grapes[J].Food Science,2017,38(7):142-148.
    [7]谢海坤,焦健,樊秀彩,等.中国野生葡萄叶绿体分离及叶绿体DNA提取的研究[J].西北植物学报,2016,36(7):1464-1469.Xie H K,Jiao J,Fan X C,et al.An optimized chloroplast isolation and chloroplast DNA extraction prolocol for Chinese wild grapes[J].Acta Botanica Boreali-Occidentalia Sinica,2016,36(7):1464-1469.
    [8]姜建福,马寅峰,樊秀彩,等.196份葡萄属(Vitis L.)种质资源耐热性评价[J].植物遗传资源学报,2017,18(1):70-79.Jiang J F,Ma Y F,Fan X C,et al.Evaluation of 196(Vitis L.)germplasm resources to heat tolerance[J].Journal of Plant Genetic Resources,2017,18(1):70-79.
    [9]王跃进,杨亚州,张剑侠,等.中国葡萄属野生种及其种间F1代抗旱性鉴定初探[J].园艺学报,2004(6):711-714.Wang Y J,Yang Y Z,Zhang J X,et al.Preliminary identification of drought resistance of Chinese wild Vitis species and its interspecific hybrids[J].Acta Horticulturae Sinica,2004(6):711-714.
    [10]杨亚州,王跃进,张剑侠,等.中国葡萄属野生种抗旱基因的分子标记及遗传分析[J].园艺学报,2007(5):1087-1092.Yang Y Z,Wang Y J,Zhang J X,et al.Molecular markers linked to drought resistance gene in Chinese wild Vitis species and their genetic analysis[J].Acta Horticulturae Sinica,2007(5):1087-1092.
    [11]潘学军,王跃进,张剑侠,等.葡萄胚挽救苗移栽技术的研究[J].西北植物学报,2004,24(6):1077-1082.Pan X J,Wang Y J,Zhang J X,et al.Study on transplanting techniques of grape seedlings from embryo rescue[J].Acta Botanica Boreali-Occidentalia Sinica,2004,24(6):1077-1082.
    [12]陈丽,王振兴,艾军,等.干旱胁迫对山葡萄左山二幼苗叶片光系统Ⅱ活性的影响[J].果树学报,2011,28(6):977-983.Chen L,Wang Z X,Ai J,et al.Effects of drought stress on activities of photosystemsⅡin leaves of young plants of amur grape Zuoshan 2[J].Journal of Fruit Science,2011,28(6):977-983.
    [13]许宏,綦伟,翟衡.葡萄砧木及品种抗旱鉴定初报[J].中国果树,2004(2):30.Xu H,Qi W,Zhai H.Preliminary identification of drought resistance of cultivar and roottock of grape[J].China Fruits,2004(2):30.
    [14]高俊凤.植物生理学试验技术[M].北京:高等教育出版社,2006:15-16,208-210.Gao J F.The plant physiology experiment technology[M].Beijing:Higher Education Press,2006:15-16,208-210.
    [15]郑清岭,杨冬艳,刘建文,等.干旱胁迫对沙芥和斧形沙芥幼苗生长及抗氧化系统的影响[J].植物生理学报,2017,53(4):600-608.Zheng Q L,Yang D Y,Liu J W,et al.Effects of drought stress on growth and antioxidant system of Pugionium cornutum and P.dolabratum seedlings[J].Plant Physiology Journal,2017,53(4):600-608.
    [16]谢小玉,张霞,张兵.油菜苗期抗旱性评价及抗旱相关指标变化分析[J].中国农业科学,2013,46(3):476-485.Xie X Y,Zhang X,Zhang B.Evaluation of drought resistance and analysis of variation of relevant parameters at seedling stage of rapeseed(Brassica napus L.)[J].Scientia Agricultura Sinica,2013,46(3):476-485.
    [17]谢志坚.农业科学中的模糊数学方法[M].武汉:华中理工大学出版社,1983:99-193.Xie Z J.The method of fuzzy mathematics in agricultural science[M].Wuhan:Huazhong University of Science Press,1983:99-193.
    [18]王海岗,陈凌,王君杰,等.20份山西糜子种质资源抗旱性综合评价[J].中国农学通报,2014,30(36):115-119.Wang H G,Chen L,Wang J J,et al.Comprehensive assessment of drought resistance of 20proso millet germplasm resources in whole growth period[J].Chinese Agricultural Science Bulletin,2014,30(36):115-119.
    [19]刘晓纳,许媛媛,朱世平,等.不同柑橘砧木的耐旱性评价[J].果树学报,2016,33(10):1230-1240.Liu X N,Xu Y Y,Zhu S P,et al.Evaluation of drought tolerance in different citrus rootstocks[J].Journal of Fruit Science,2016,33(10):1230-1240.
    [20]王丁,姚健,杨雪,等.干旱胁迫条件下6种喀斯特主要造林树种苗木叶片水势及吸水潜能变化[J].生态学报,2011,31(8):2216-2226.Wang D,Yao J,Yang X,et al.Changes of leaf water potential and water absorption potential capacities of six kinds of seedlings in Karst mount area under different drought stress intensities:taking six forestation seedlings in Karst mountainous region for example[J].Acta Ecologica Sinica,2011,31(8):2216-2226.
    [21]丁龙,赵慧敏,曾文静,等.五种西北旱区植物对干旱胁迫的生理响应[J].应用生态学报,2017,28(5):1455-1463.Ding L,Zhao H M,Zeng W J,et al.Physiological responses of five plants in northwest China arid area under drought stress[J].Chinese Journal of Applied Ecology,2017,28(5):1455-1463.
    [22] Patnaik D,Khurana P.Wheat biotechnology:a minireview[J].Electronic Journal of Biotechnology,2001,4(2):74-102.
    [23] Glombitza S,Dubuis P H,Thulke O.Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism[J].Plant Molecular Biology,2004,54(6):817-835.
    [24] Sofo A,Scopa A,Nuzzaci M,et al.Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses[J].International Journal of Molecular Sciences,2015,16:13561-13578.
    [25] Ye J,Wang S W,Deng X P,et al,Melatonin increased maize(Zea mays L.)seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage[J].Acta Physiology Plant,2016,38(2):1-13.
    [26]郭华军.水分胁迫过程中的渗透调节物质及其研究进展[J].安徽农业科学,2010,85(15):7750-7753,7760.Guo H J.Research progress osmotic adjustment material under water stress[J].Journal of Anhui Agri Sci,2010,85(15):7750-7753,7760.
    [27]钱永强,孙振元,韩蕾,等.野牛草叶片活性氧及其清除系统对水分胁迫的响应[J].生态学报,2010,30(7):1920-1926.Qian Y Q,Sun Z Y,Han L,et al.Response of reactive oxgen and its scavenging system in leaves of Buchloe dactyloides(Nutt.)engelm to water stress[J].Acta Ecologica Sinica,2010,30(7):1920-1926.
    [28]孔庆山.中国葡萄志[M].北京:中国农业科技出版社,2004.Kong Q S.Chinese grapevines[M].Beijing:China Agricultural Science and Technology Press,2004.
    [29]王勇,李玉玲,骆强伟,等.6个葡萄品种(系)抗旱性比较研究[J].中国农学通报,2014,30(19):219-222.Wang Y,Li Y L,Luo Q W,et al.Comparative study on drought resistance of six grape varieties(lines)[J].Chinese Agricultural Science Bulletin,2014,30(19):219-222.
    [30] Song J Z,Li P P,Fu W G,et al.The effects of physiological and biochemical characteristics on Phalaris arundinacea in water stress and rewatering[J].Acta Practaculture Science,2012,21(2):62-69.
    [31]周广生,梅方竹,周竹青,等.小麦不同品种耐湿性生理指标综合评价及其预测[J].中国农业科学,2003,36(11):1378-1382.Zhou G S,Mei F Z,Zhou Z Q,et al.Comprehensive evaluation and forecast on physiological indices of waterlogging resistance of different wheat varieties[J].Scientia Agricultura Sinica,2003,36(11):1378-1382.
    [32] Wang H G,Chen L,Wang J J,et al.Comprehensive assessment of drought resistance of proso millet germplasm resources in Shanxi[J].Agricultural Science&Technology,2015,16(9):1916-1920.
    [33] Hofacker W.Investigations on the substance production of grapes under influence of changing soil water supply[J].False Vitis,1977,8:162-173.
    [34]贺普超.葡萄学[M].北京:中国农业出版社,1999:563.He P C.Enology[M].Beijing:China Agriculture Press,1999:563.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.