微流体器官芯片研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Research Progress of Microfluidic Organ-on-Chips
  • 作者:苏皓然 ; 赵萍 ; 邓小燕 ; 樊瑜波 ; 刘肖
  • 英文作者:SU Haoran;ZHAO Ping;DENG Xiaoyan;FAN Yubo;LIU Xiao;Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University;Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University;
  • 关键词:微流体技术 ; 器官芯片 ; 药物筛选
  • 英文关键词:microfluidic technology;;organ-on-chips;;drug screening
  • 中文刊名:YISX
  • 英文刊名:Journal of Medical Biomechanics
  • 机构:北京航空航天大学生物与医学工程学院生物力学与力生物学教育部重点实验室;北京航空航天大学生物医学工程高精尖创新中心;
  • 出版日期:2019-06-15
  • 出版单位:医用生物力学
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金项目(31570947,61533016,11332003,11421202);; 中国科协青年人才托举工程项目(2016QNRC001)
  • 语种:中文;
  • 页:YISX201903016
  • 页数:7
  • CN:03
  • ISSN:31-1624/R
  • 分类号:99-105
摘要
微流体技术是指通过操控亚毫米尺度的流体,从而实现流体精确控制的技术。近年来,利用微流体技术,实现了器官芯片的构建。器官芯片是指具有生理功能的微模型,在连续灌注的微米级腔室中培养活细胞,以模拟组织和器官的生理功能。由于具有生理功能的器官芯片具有功能明确、微环境可控、测量信息丰富、实验试剂消耗量小、成本低、有望实现自动化和高通量等众多优点,在药物开发领域具有巨大的应用前景,有望解决药物开发中细胞培养和动物实验中的瓶颈问题,近年来引起学术界的极大关注。目前为止,虽然器官芯片还是很年轻的行业,但是研究人员已开发了部分微流体器官芯片,并探索其潜在的应用可能,包括药物靶点优化、药物筛选和毒性试验、生物标志物鉴定等。分析近年来利用微流控技术制造的器官芯片所取得的进展,以及这些结果对临床研究的意义。
        Microfluidic technology refers to the technique of precise fluid control by manipulating submillimeter-scale fluids. In recent years, the use of microfluidic technology has realized the construction of organ-on-chips. The organ-on-chip refers to a micro-model with physiological functions, and cultivating living cells in a continuously perfused micro-chamber to simulate the physiological functions of tissues and organs. As the physiological function of the organ-on-chip has many advantages such as definite function, controllable microenvironment, rich measurement information, low chemical consumption, low cost, promising automation and high throughput, it has a huge application prospect in the field of drug development to solve the bottleneck problems in cellular and animal experiments, which has caused a great concern in the academic community. Although the organ-on-chip is still a very young research field, some microfluidic organ-on-chips have been developed and their potential applications are explored, including drug target optimization, drug screening and toxicity tests, and biomarker identification. In this review, the progress made in microfluidic organ microchips and their potential significance in clinical research were analyzed.
引文
[1] DUNCOMBE TA,TENTORI AM,HERR AE.Microfluidics:reframing biological enquiry [J].Nat Rev Mol Cell Biol,2015,16 (9):554-567.
    [2] DUFFY DC,MCDONALD JC,SCHUELLER OJ,et al.Rapid prototyping of microfluidic systems in poly (dimethylsiloxane) [J].Anal Chem,1998,70 (23):4974-4984.
    [3] SHI Q,QIN L,WEI W,et al.Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells [J].Proc Natl Acad Sci USA,2012,109 (2):419-424.
    [4] HU X,CUBAUD T.Viscous wave breaking and ligament formation in microfluidic systems [J].Phys Rev Lett,2018,121(4):044-502.
    [5] 卢斯媛,蔡绍皙,戴小珍,等.浓度与压力梯度可调的三维细胞培养微流控芯片的研制[J].医用生物力学,2011,26 (4):335-340.LU SY,CAI SX,DAI XZ,et al.Development of three-dimensional cell culture microfluidic chip with adjustable concentration and pressure gradient [J].J Med Biomech,2011,26 (4):335-340.
    [6] LANCASTER MA,RENNER M,MARTIN CA,et al.Cerebral organoids model human brain development and microcephaly [J].Nature,2013.501(7467):373-379
    [7] BHATIA SN,INGBER DE.Microfluidic organs-on-chip [J].Nat Bio,2014,32 (8):760-768.
    [8] CHEN CS,MRKSICH M,HUANG S,et al.Geometric control of cell life and death [J].Science,1997,276(5317):1425-1428.
    [9] FOLCH A,TONER M.Cellular micropatterns on biocompatible materials [J].Bio Prog,1998,14 (3):388-392.
    [10] ERGIR E,BACHMANN B,REDL H,et al.Small force,big impact:Next generation organ-on-a-chip systems incorporating biomechanical cues [J].Front Phys,2018,9:1417.
    [11] KANE RS,TAKAYAMA S,OSTUNI E,et al.Patterning proteins and cells using soft lithography [J].Biomaterials,1999,20(23-24):2363-2376.
    [12] HUH D,MATTHEWS BD,MAMMOTO A,et al.Reconstituting organ-level lung functions on a chip [J].Science,2010,328(5986):1662-1668.
    [13] ZHANG YS,ALEMAN J,ARNERI A,et al.From cardiac tissue engineering to heart-on-a-chip:Beating challenge [J].Biomed Mater,2015,10 (3):034006.
    [14] MARSANO A,CONFICCONI C,LEMME M,et al.Heart on a chip:A novel microfluidic platform to generate functional 3D cardiac microtissues [J].Lab Chip,2016,16(3):599-610.
    [15] ZHANG YZ,ALEMAN J,AMERI A,et al.Human iPSC-based cardiac microphysiological system for drug screening applications [J].Sci Rep,2015,5:8883.
    [16] HUN D,LESLIE DC,MATTHEWS BD,et al.A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice [J].Sci Transl Med,2012,4(159):147-159.
    [17] HOU X,ZHANG Y,I SANTIAGO GT,et al.Interplay between materials and microfluidics [J].Nat Rev Mater,2017,2(5),DOI:10.1038/natrevmats.2017.16.
    [18] PAGUIRIGAN AL,BEEBE DJ.Microfluidics meet cell biology:Bridging the gap by validation and application of microscale techniques for cell biological assays [J].Bioessays,2008,30(9):811-821.
    [19] HOBI N,STUCKI J.GALIMOV A,et al.The breathing lung-on-chip model for routine laboratory application [J].Toxicology Letters,2017,280:S272-S272.
    [20] STUCKI AO,STUCKI JD,HALL SR,et al.A lung-on-a-chip array with an integrated bio-inspired respiration mechanism [J].Lab Chip,2015,15 (5):1302-1310.
    [21] YANG X,LI K,ZHANG X,et al.Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing [J].Lab Chip,2018,18(3):486-495.
    [22] UGOLINI GS,VISONE R,CRUZ-MOREIRA,et al.Tailoring cardiac environment in microphysiological systems:An outlook on current and perspective heart-on-chip platforms [J].Future Sci OA,2017,3(2):191-192.
    [23] AGARWAL A,GOSS JA,CHO A,et al.Microfluidic heart on a chip for higher throughput pharmacological studies [J].Lab Chip,2013,13(18):3599-3608.
    [24] ZHANG X,WANG T,WANG P,et al.High-throughput assessment of drug cardiac safety using a high-speed impedance detection technology-based heart-on-a-chip [J].Micromachines,2016,7(7):122-129.
    [25] MORGAN JP,DELNERO PF,ZHENG Y,et al.Formation of microvascular networks in vitro [J].Nat Pro,2013,8 (9):1820-1829.
    [26] SCHIMEK K,BUSEK M,BRINCKER S,et al.Integrating biological vasculature into a multi-organ-chip microsystem [J].Lab Chip,2013,13(18):3588-3598.
    [27] RIBAS J,SADEGHI H,MANBACHI A,et al.Cardiovascular organ-on-a-chip platforms for drug discovery and development [J].Appl In Vitro Toxicol,2016,2 (2):82-96.
    [28] CONANT G,LAI BFL,LU RXZ,et al.High-content assessment of cardiac function using heart-on-a-chip devices as drug screening model [J].Stem Cell Rev,2017,13 (3):335-346.
    [29] ESSIG M,TERZI F,BURTIN M,et al.Mechanical strains induced by tubular flow affect the phenotype of proximal tubular cells [J].Am J Phy Ren Phy,2001,281(11):F751-F762.
    [30] JANG KJ,MEHR AP,HAMILTON GA,et al.Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment [J].Integr Bio,2013,5(9):1119-1129.
    [31] DUAN Y,WEINSTEIN AM,WEINBAUM S,et al.Shear stress-induced changes of membrane transporter localization and expression in mouse proximal tubule cells [J].Proc Natl Acad Sci USA,2010,107(50):21860-21865.
    [32] JANG KJ,CHO HS,KANGDO H,et al.Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells [J].Integr Biol,2011,3(2):134-141.
    [33] WILMER MJ,NG CP,LANZ HL,et al.Kidney-on-a-chip technology for drug-induced nephrotoxicity screening [J].Trends Bio,2016,34(2):156-170.
    [34] Zhang BJ,HUANG CW,CHANG KW,et al.Microfluidic chip of immunoassay system for kidney studies [C]//Proceedings of 19th International Conference on Solid-State Sensors,Actuators and Microsystems.Kaohsiung:IEEE,2017.
    [35] CHIU JJ,CHIEN S.Effects of disturbed flow on vascular endothelium:Pathophysiological basis and clinical perspectives [J].Physiol Rev,2011,91(1):327-387.
    [36] WONG KH,CHAN JM,KAMM RD,et al.Microfluidic models of vascular functions [J].Annu Rev Biomed Eng,2012,14:205-230.
    [37] 白帆,刘有军,谢进生,等.血流动力学的医学应用与发展[J].医用生物力学,2013,28 (6):677-683.BAI F,LIU YJ,XIE JS,et al.Medical application and development of hemodynamics[J].J Med Biomech,2013,28 (6):677-683.
    [38] KIM S,LEE H,CHUANG M,et al.Engineering of functional perfusable 3D microvascular networks on a chip [J].Lab Chip,2013,13(12):1489-1500.
    [39] SCHIMEK K,BUSEK M,BRINCKER S,et al.Integrating biological vasculature into a multi-organ-chip microsystem [J].Lab Chip,2013,13(10):3588-3598.
    [40] ZHANG W,ZHANG YS,BAKHT SM,et al.Elastomeric free-form blood vessels for interconnecting organs on chip systems [J].Lab Chip,2016,16 (9):1579-1586.
    [41] HASENBERG T,MUNLEDR S,DOTZLER A,et al.Emulating human microcapillaries in a multi-organ-chip platform [J].J Biotechnol,2015,216:1-10.
    [42] WAN L,SKOKO J,YU J,et al.Mimicking embedded vasculature structure for 3D cancer on a chip approaches through micromilling [J].Sci Rep,2017,7 (1):16724.
    [43] CHEN MB,WHISLER JA,FROSE J,et al.On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics [J].Nat Pro,2017,12 (5):865-880.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.