宏观树枝状铜纳米线的制备及分形学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis of the Macroscopic Dentritic Copper Nanowires and Fractal Research
  • 作者:董菁 ; 徐大鹏 ; 彭渝丽 ; 杨巍 ; 陈建
  • 英文作者:DONG Jing;XU Dapeng;PENG Yuli;YANG Wei;CHEN Jian;School of Materials and Chemical Engineering,Xi'an Technological University;
  • 关键词:固态离子学方法 ; 铜纳米线 ; 快离子导体 ; 树枝状结构 ; 分形维数
  • 英文关键词:solid-state ionics method;;copper nanowires;;fast ionic conductor;;dentritic structures;;fractal dimension
  • 中文刊名:XAGY
  • 英文刊名:Journal of Xi’an Technological University
  • 机构:西安工业大学材料与化工学院;
  • 出版日期:2018-04-25
  • 出版单位:西安工业大学学报
  • 年:2018
  • 期:v.38;No.204
  • 基金:国家自然科学基金(11504284);; 陕西省教育厅专项科研计划项目(16JK1377)
  • 语种:中文;
  • 页:XAGY201802001
  • 页数:7
  • CN:02
  • ISSN:61-1458/N
  • 分类号:5-11
摘要
为了进一步揭示固态离子学方法制备铜纳米线的生长机理,选取具有高离子电导率的快离子导体Rb_4Cu_(16)Cl_(13)I_7薄膜,利用固态离子学方法在外加恒定电流3μA作用下,制备厘米级铜纳米线.采用扫描电子显微镜对其微观形貌进行了表征和分析,利用能量色散光谱仪确定纳米线的化学成分.结果表明:制备的铜纳米线呈现宏观树枝状结构,在靠近阴极位置整齐排布,长度约为2 mm,且排布比较紧密,部分纳米线在生长过程中出现分形生长,最长分支长度约为1 cm,排布比较稀疏;铜纳米线呈长程无序短程有序,直径分布范围为90~100 nm,纳米线表面铜纳米颗粒直径分布范围为10~20 nm,树枝状铜纳米线的分形维数为1.35,说明树枝状铜纳米线较少,铜纳米线的生长机理分析表明,树枝状结构的出现与纳米线"顶端生长优势"有关.
        In order to reveal the growth mechanism of copper nanowires prepared by a solid-state ionics method furtherly,copper nanowires with centimeter grade were prepared by a solid-state ionics method using fast ionic conductor Rb_4Cu_(16)Cl_(13)I_7 films under 3 μA direct current electric field. The surface morphology of the copper nanowires was characterized and analysed by scanning electron microscopy,and the chemical composition of the nanowires was measured by energy dispersive spectrometer. The results show the prepared copper nanowires are dendritic structures macroscopicly,which are arranged neatly near the cathode and the length is about 2 mm.Besides,the results indicate that the copper nanowires arrange sparsely,and the fractal growth occurs in the growth process of some nanowires whose longest branch length is about 1 cm. Copper nanowires present long-range disorder and short-range order,the diameters of nanowires range from 90 to 100 nm,the diameters of copper nanoparticles on the nanowires range from 10 to 20 nm. The fractal dimension of dentritic copper nanowires is 1.35,which indicates that there are less dentritic nanostructures in the whole growing nanostructures. The growth mechanism of copper nanowires is associated with apical growth advantage.
引文
[1]CAI S G,XIAO X Q,YE X Y,et al.Nonlinear Optical and Optical Limiting Properties of Ultra-long Gold Nanowires[J].Materials Letters,2016,166:51.
    [2]WANG R L,RUAN H B.Synthesis of Copper Nanowires and Its Application to Flexible Transparent Electrode[J].Journal of Alloys and Compounds,2016,656:936.
    [3]卢柯,卢磊.金属纳米材料力学性能的研究进展[J].金属学报,2000,36(8):785.LU Ke,LU Lei.Progress in Mechanical Properties of Nanocrystalline Materials[J].Acta Metallurgica Sinica,2000,36(8):785.(in Chinese)
    [4]CHEN W,WANG Z F,ZHI C Y,et al.High Thermal Conductivity and Temperature Probing of Copper Nanowire/Upconversion Nanoparticles/Epoxy Composite[J].Composites Science and Technology,2016,130:63.
    [5]贾冰洋,李强,王琼,等.铜、钴、镍纳米晶的化学还原合成及催化性能研究进展[J].材料导报,2016,30(3):48.JIA Bingyang,LI Qiang,WANG Qiong,et al.The Progress of Researches on Chemical Reduction Synthesis and Catalytic Properties of Copper,Cobalt,Nickel Nanocrystalline[J].Materials Review,2016,30(3):48.(in Chinese)
    [6]高琪,阚彩侠,李俊龙,等.铜纳米线的液相制备及其表面修饰研究进展[J].物理化学学报,2016,32(7):1604.GAO Qi,KAN Caixia,LI Junlong,et al.Research Progress on the Liquid-phase Preparation and Surface Modification of Copper Nanowires[J].Acta Physico-Chimica Sinica,2016,32(7):1604.(in Chinese)
    [7]张盛强,汪建义,王大辉,等.纳米金属材料的研究进展[J].材料导报,2011(S1):5.ZHANG Shengqiang,WANG Jianyi,WANG Dahui,et al.Recent Progress on Nano Metallic Materials[J].Materials Review,2011(S1):5.(in Chinese)
    [8]CHAUHAN R P,RANA P.Nickel Ion Induced Modification in the Electrical Conductivity of Cu Nanowires[J].Radiation Measurements,2015,83:43.
    [9]RATHMELL A R,BERGIN S M,HUA Y L,et al.The Growth Mechanism of Copper Nanowires and Their Properties in Flexible,Transparent Conducting Films[J].Advanced Materials,2010,22(32):3558.
    [10]HENRY W A,BIRIS A S,WATANABE F,et al.Surface-enhanced Infrared Absorption Studies of Copper Nanostructures Formed by Oblique-angle Deposition[J].Chemical Physics Letters,2016,663:111.
    [11]王超,贺跃辉,彭超群,等.一维金属纳米材料的研究进展[J].中国有色金属学报,2012,22(1):128.WANG Chao,HE Yuehui,PENG Chaoqun,et al.Research Progress of One Dimension Metal Nanomaterials[J].The Chinese Journal of Nonferrous Metals,2012,22(1):128.(in Chinese)
    [12]LIU Z W,BANDO Y.A Novel Method for Preparing Copper Nanorods and Nanowires[J].Advanced Materials,2003,15(4):303.
    [13]JIANG Z,TIAN Y H,DING S.Synthesis and Characterization of Ultra-long and Pencil-like Copper Nanowires with a Penta-twinned Structure by Hydrothermal Method[J].Materials Letters,2014,136:310.
    [14]CHEN C L,LOU Z S,CHEN Q W.A Novel Way for Preparing Cu Nanowires[J].Chemical Letters,2005,34(3):430.
    [15]KUMAR S,SAINI D,LOTEY G S,et al.Electrochemical Synthesis of Copper Nanowires in Anodic Alumina Membrane and Their Impedance Analysis[J].Superlattices and Microstructures,2011,50(6):698.
    [16]XU D P,DONG Z M,SUN J L.Fabrication of High Performance Surface Enhanced Raman Scattering Substrates by a Solid-state Ionics Method[J].Nanotechnology,2012,23(12):125705.
    [17]ZHANG J H,LIU W,SUN J L,et al.Controlled Synthesis of Copper Nanostructures[J].Materials Science and Engineering A,2006,433(1/2):257.
    [18]CHAMORRO-POSADA P.A Simple Method for Estimating the Fractal Dimension from Digital Images:The Compression Dimension[J].Chaos Solitons&Fractals,2016,91:562.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.