大长径比钽爆炸成型弹丸控制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Forming Control of Tantalum EFP with Large Aspect Ratio
  • 作者:朱志鹏 ; 门建兵 ; 蒋建伟 ; 王树有 ; 李梅
  • 英文作者:ZHU Zhi-peng;MEN Jian-bing;JIANG Jian-wei;WANG Shu-you;LI Mei;State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology;
  • 关键词:爆炸成型弹丸 ; 大长径比 ; ; 数值模拟 ; 结构参数
  • 英文关键词:explosively formed projectile;;large aspect ratio;;tantalum;;numerical simulation;;structural parameter
  • 中文刊名:BIGO
  • 英文刊名:Acta Armamentarii
  • 机构:北京理工大学爆炸科学与技术国家重点实验室;
  • 出版日期:2018-12-15
  • 出版单位:兵工学报
  • 年:2018
  • 期:v.39
  • 语种:中文;
  • 页:BIGO2018S1005
  • 页数:8
  • CN:S1
  • ISSN:11-2176/TJ
  • 分类号:32-39
摘要
为获得高威力大长径比钽爆炸成型弹丸(EFP)的装药结构,采用AUTODYN数值软件开展了钽罩聚能装药不同结构参数(壳体厚度、装药高度、药型罩外曲率半径及药型罩厚度)对钽EFP成型特性(速度、长径比、颈缩率及密实度)的影响研究,确定了各结构参数的合理取值范围。通过正交优化设计得到了各结构参数对钽EFP成型性能指标影响的主次顺序,确定了能形成性能良好的大长径比EFP的结构参数组合(壳体厚度为0. 089 3D、装药高度为0. 85D,药型罩外曲率半径为0. 982D及药型罩厚度为0. 028 6D,D为装药直径)。研究结果表明:钽EFP速度随着壳体厚度、装药高度、药型罩外曲率半径的增大而增大,随着药型罩厚度的增大而减小;长径比及密实度随着壳体厚度、装药高度的增大而增大,随着药型罩外曲率半径及药型罩厚度的增大而减小;颈缩率随着壳体厚度、药型罩厚度的增大而减小,随着装药高度、药型罩外曲率半径的增大先减小后增大。优化方案钽EFP长径比为4. 76,对半无限45号钢靶侵彻深度1. 08D,相比铜EFP侵彻能力有较大程度的提升。
        In order to obtain the charge structure of high-power and large aspect ratio tantalum explosively formed projectile( EFP),the influences of different structural parameters,such as shell thickness,charge height,curvature radius and thickness of liner,of tantalum liner shaped charge on the forming characteristics,such as velocity,aspect ratio,necking ratio and compactness,of tantalum EFP were studied by using AUTODYN numerical software,and the reasonable range of structural parameters was determined.On this basis,the primary and secondary orders of the influences of structural parameters on the forming performance of tantalum EFP are obtained by orthogonal optimization design,and the combination of structural parameters( shell thickness is 0. 089 3 D,charge height is 0. 85 D,curvature radius of liner is0. 982 D,and thickness of liner is 0. 028 6 D,where D is the diameter of the charge) for EFP with high aspect ratio is determined. The results show that EFP velocity increases with the increase in shell thickness,charge height and curvature radius of liner,and decreases with the increase in liner thickness; the aspect ratio and compactness increase with the increase in shell thickness and charge height,and decrease with the increase in curvature radius of liner and thickness of liner; and the necking ratio decreases with the increase in shell thickness and thickness of liner,and decreases first and then increases with the increase in charge height and curvature radius of liner. The aspect ratio of optimized tantalum EFP is 4. 76,and the penetration depth for semi-infinite steel targets is 1. 08 D. The penetration ability of tantalum EFP has been greatly improved compared with copper EFP.
引文
[1]隋树元,王树山.终点效应学[M].北京:国防工业出版社,2000:233-237.SUI Shu-yuan,WANG Shu-shan. Terminal effects[M]. Beijing:Na-tional Defense Industry Press,2000:233-237.(in Chinese)
    [2]杨绍卿.灵巧弹药工程[M].北京:国防工业出版社,2010:1-7.YANG Shao-qing. Smart ammunition engineering[M]. Beijing:Na-tional Defense Industry Press,2010:1-7.(in Chinese)
    [3]王兵.爆炸成型弹用药型罩材料的研制动向[J].国外兵器动态,1996(3):10.WANG Bing. Developing trends of material in shaped charge linerfor explosively formed projectile[J]. Foreign Weapon Tends,1996(3):10.(in Chinese)
    [4] Steinberg D J,Lund C M. A constitutive model for strain rates from10-4s-1to 106s-1[J]. Journal of Applied Physics,1989,65(4):1528-1533.
    [5] Chen S R,GrayⅢG T,Bingert S R. Mechanical properties andconstitutive relations for tantalum and tantalum alloys under high-rate deformation,LA-UR-96-0602[R]. Los Alamos,AM,US:LosAlamos National Laboratory,1996.
    [6] Chen S R,Gray G T. Constitutive behavior of tantalum and tanta-lum-tungsten alloys[J]. Metallurgical&Materials Transactions A,1996,27(10):2994-3006.
    [7]彭建祥.钽的本构关系研究[D].绵阳:中国工程物理研究院,2001.PENG Jian-xiang. Constitutive behavior of tantalum[D]. Mianyang:Chinese Academy of Engineering Physics,2001.(in Chinese)
    [8]张廷杰,张德尧,丁旭.高钨含量钽基合金力学性能的研究[J].稀有金属材料与工程,1996,25(4):5-10.ZHANG Ting-jie,ZHANG De-yao,DING Xu. Study on mechanicalproperties of several tantalum alloys with higher tungsten content[J]. Rare Metal Materials and Engineering,1996,25(4):5-10.(in Chinese)
    [9]张万甲.钽-钨合金动态响应特性研究[J].爆炸与冲击,2000,20(1):45-51.ZHANG Wan-jia. Dynamic response characteristics of tantalumtungsten alloy[J]. Explosion and Shock Waves,2000,20(1):45-51.(in Chinese)
    [10]高飞,张先锋,Ahmad S,等.钽钨合金动态力学行为及其本构模型研究[J].稀有金属材料与工程,2017,46(10):2753-2762.GAO Fei,ZHANG Xian-feng,Ahmad S,et al. Dynamic behaviorand constitutive model for two tantalum-tungsten alloys underelevated strain rates[J]. Rare Metal Materials and Engineering,2017,446(10):2753-2762.(in Chinese)
    [11] Kim H J,Yi Y S,Park L J. Analysis of forming characteristics ofTa EFP according to material model[J]. EPJ Web of Confer-ences,2015,94:04060.
    [12]樊雪飞,李伟兵,王晓鸣,等.爆轰驱动钽药型罩形成双模毁伤元仿真与试验研究[J].兵工学报,2017,38(10):1918-1925.FAN Xue-fei,LI Wei-bing,WANG Xiao-ming,et al. Simulationand experimental study of tantalum liner to form dual-modedamage element by detonation[J]. Acta Armamentarii,2017,38(10):1918-1925. in Chinese)
    [13]郭腾飞,李伟兵,李文彬,等.钽罩结构参数对EFP成型及侵彻性能的控制[J].高压物理学报,2018,32(3):035104-1-035104-8.GUO Teng-fei, LI Wei-bing, LI Wen-bin,et al. Controllingeffect of tantalum liner's structural parameters on EFP formationand penetration performance[J]. Chinese Journal of High Pres-sure Physics,2018,32(3):035104-1-035104-8.(in Chinese)
    [14]尹建平.多爆炸成型弹丸战斗部技术[M].北京:国防工业出版社,2012:1-7.YIN Jian-ping. Multiple explosively formed projectile warheadtechnology[M]. Beijing:National Defense Industry Press,2012:1-7.(in Chinese)
    [15]门建兵,蒋建伟,王树有.爆炸冲击数值模拟技术基础[M].北京:北京理工大学出版社,2015.MEN Jian-bing,JIANG Jian-wei,WANG Shu-you. Foundation ofnumerical simulation for explosion and shock problems[M]. Bei-jing:Beijing Institute of Technology Press,2015.(in Chinese)
    [16]皮铮迪,陈朗,刘丹阳,等. CL-20基混合炸药的冲击起爆特征[J].爆炸与冲击,2017,37(6):915-923.PI Zheng-di,CHEN Lang,LIU Dan-yang,et al. Shock initiationof CL-20 based explosives[J]. Explosion and Shock Waves,2017,37(6):915-923.(in Chinese)
    [17]陈刚,陈忠富,徐伟芳,等. 45钢的J-C损伤失效参量研究[J].爆炸与冲击,2007,27(2):131-135.CHEN Gang,CHEN Zhong-fu,XU Wei-fang,et al. Investigationon the J-C ductile fracture parameters of 45 steel[J]. Explosionand Shock Waves,2007,27(2):131-135.(in Chinese)
    [18]正交试验设计法编写组.正交试验设计法[M].上海:上海科学技术出版社,1979.Writing Group of Design Method for Orthogonal Test. Designmethod for orthogonal test[M]. Shanghai:Shanghai PublishingHouse of Science and Technology,1979.(in Chinese)
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.