枣树间作巷道土壤养分空间分异对冬小麦冠层光分布的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of Spatial Heterogeneity of Soil Nutrients to Canopy Light Distribution of Winter Wheat in Jujube Intercropping Alley
  • 作者:郭佳欢 ; 冯会丽 ; 史彦江 ; 俞元春
  • 英文作者:GUO Jia-huan;FENG Hui-li;SHI Yan-jiang;YU Yuan-chun;Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University;Economic Forest Research Institute, Xinjiang Academy of Forestry;
  • 关键词:冬小麦 ; 间作 ; 光合有效辐射 ; 土壤有机质 ; 土壤速效N、P、K
  • 英文关键词:Winter wheat;;Intercropping;;PAR;;Soil organic matter;;Soil available N,P,K
  • 中文刊名:XNYX
  • 英文刊名:Southwest China Journal of Agricultural Sciences
  • 机构:南方现代林业协同创新中心南京林业大学生物与环境学院;新疆林业科学院经济林研究所;
  • 出版日期:2019-05-28
  • 出版单位:西南农业学报
  • 年:2019
  • 期:v.32
  • 基金:国家自然科学基金重点资助项目(3963024);; 国家林业公益行业科研专项(201304701-1)
  • 语种:中文;
  • 页:XNYX201905007
  • 页数:8
  • CN:05
  • ISSN:51-1213/S
  • 分类号:47-54
摘要
【目的】本文调查了枣麦间作时冬小麦冠层光分布对土壤养分变化的影响。【方法】采用田间调查与室内分析相结合的方法,以株行距为3 m×4 m南北行向栽植的枣树(Ziziphus jujuba)与冬小麦(Triticum aestivum)间作系统为研究对象,以2016-2017年生长季冬小麦冠层光合有效辐射(PAR)为基础,在不同调查时期(拔节期、抽穗期、扬花期、灌浆期、成熟期)测定冬小麦冠层PAR,并同步测定土壤有机质、速效N、速效P、速效K等养分含量,分析冬小麦冠层PAR分布对土壤养分吸收利用的影响。【结果】不同调查时期冬小麦冠层PAR均呈"n"型单峰曲线时空分布,土壤中各养分含量变化也呈现出一定的时空异质特征,其中,土壤有机质和速效K均表现出"中间低,两侧高"的变化规律,速效N和速效P则表现出"东侧高,西侧低、中间低,两边高"和"东侧低,西侧高、中间低,两边高"的变化规律。土壤有机质、速效N、速效P和速效K含量分别在拔节期、成熟期、灌浆期和扬花期达到最低值,分别为15.04 g·kg~(-1)、58.98 mg·kg~(-1)、6.91 mg·kg~(-1)和164.86 mg·kg~(-1)。相关系分析显示,冬小麦冠层PAR与速效P呈极显著负相关,土壤有机质则与速效N、速效K分别呈极显著正相关和显著正相关。【结论】研究认为,枣麦间作系统中冬小麦冠层PAR时空分布具有一定的异质性,在冬小麦整个生育期内主要表现为"中间高,两侧低"和"东侧高,西侧低"的分布特征。长期处于异质光环境中的冬小麦对土壤速效养分利用的差异累积使其也呈现出明显的空间分布差异。为提高间作系统产量,可在冬小麦拔节期增施有机肥,扬花期增施K肥,灌浆期增施P肥,成熟期增施N肥,且适当增加巷道西侧区域施肥量。光照充足时,速效P的亏缺是限制冬小麦生长的主要养分因子。枣麦共生期间适当增施P肥有利于系统生产力的维持。
        【Objective】This paper aimed to investigate the effect of winter wheat canopy light distribution on soil nutrient changes in the intercropping period of wheat and jujube.【Method】The combination of field investigation and indoor analysis was used. The intercropping system of jujube(Ziziphus jujuba) and winter wheat(Triticum aestivum) were planted at a spacing of 3 m×4 m from north to south, and based on the photosynthetically active radiation(PAR) of winter wheat canopy in the growing season from 2016 to 2017. The canopy PAR of winter wheat was measured at different survey periods(joining stage, heading stage, flowering stage, filling stage and mature stage), and the soil nutrient contents such as organic matter, available N, available P and available K, were measured simultaneously. The effect of winter wheat canopy PAR distribution on the absorption and utilization of soil nutrients was analyzed.【Result】The canopy PARs of winter wheat showed the spatial and temporal distribution of ‘n' type unimodal curves at different survey periods, and the changes in nutrient content in soil also showed certain spatial and temporal heterogeneity, of which the soil organic matter and available K all showed the characteristics of ‘low in the middle and high in both sides', and the available N and available P showed the characteristics of ‘high in the east, low in the west, low in the middle, high in both sides' and ‘low in the east, high in the west, low in the middle, and high in both sides'. The contents of soil organic matter, available N, available P, and available K reached the lowest values at the jointing stage, mature stage, filling stage, and flowering stage, and were 15.04 g·kg~(-1), 58.98 mg·kg~(-1), 6.91 mg·kg~(-1)and 164.86 mg·kg~(-1), respectively. Correlation analysis showed that winter wheat canopy PAR was significantly negatively correlated with available P, and soil organic matter was significantly positively correlated and significantly positively correlated with available N and available K, respectively.【Conclusion】The study considers that the temporal and spatial distribution of canopy PAR in winter wheat in jujube-wheat intercropping system has a certain heterogeneity. In the whole growth period of winter wheat, the main characteristics are ‘intermediate high, low on both sides' and ‘high on the east side and low on the west side'. The differential accumulation of available soil nutrients in winter wheat under long-term heterogeneity has shown significant differences in spatial distribution. In order to increase intercropping system yield, organic fertilizer can be added during jointing stage of winter wheat, K fertilizer can be increased during flowering stage, P fertilizer can be added during grain filling stage, N fertilizer can be increased during mature period, and the amount of fertilizer can be increased in the west side of alley. When light is sufficient, the deficiency of available P is the main nutrient factor that restricts the growth of winter wheat. Appropriate application of P fertilizer during the symbiosis between jujube and winter wheat is beneficial to the maintenance of system productivity.
引文
[1]Baumann D T,Bastiaans L,Goudriaan J,et al.Analysing crop yield and plant quality in an intercropping system using an eco-physiological model for interplant competition[J].Agricultural Systems,2002,73(2):173-203.
    [2]Ghosh P K.Growth,yield,competition and economics of groundnut/cereal fodder intercropping systems in the semi-arid tropics of India[J].Field Crops Research,2004,88(2):227-237.
    [3]Willey R W.Resource use in intercropping systems[J].Agricultural Water Management,1990,17(1):215-231.
    [4]冯会丽,吴正保,史彦江,等.基于因子分析的灰枣优良无性系果实品质评价[J].食品科学,2016,37(9):77-81.
    [5]陈虹.新疆统计年鉴[M].北京:中国统计出版社,2013:397-398.
    [6]Jose S.Agroforestry for ecosystem services and environmental benefits:an overview[J].Agroforestry Systems,2009,76(1):1-10.
    [7]刘敬强,瓦哈甫·哈力克,王冠生,等.新疆特色林果业资源时空分异规律研究[J].干旱地区农业研究,2012,30(2):230-236.
    [8]Yazaki T,Yabe K.Effects of snow-load and shading by vascular plants on the vertical growth of hummocks formed by Sphagnum papillosum in a mire of northern Japan[J].Plant Ecology,2012,213(7):1055-1067.
    [9]Héraut-Bron V,Robin C,Varlet-Grancher C,et al.Phytochrome mediated effects on leaves of white clover:consequences for light interception by the plant under competition for light[J].Annals of Botany,2001,88(4):737-743.
    [10]尹飞,毛任钊,傅伯杰,等.枣粮间作生态系统土壤氮空间分布特性[J].生态学报,2009,29(1):325-331.
    [11]Tarkalson D D,King B A,Bjorneberg D L,et al.Effects of planting configuration and in-row plant spacing on photosynthetically active radiation interception for three irrigated potato cultivars[J].Potato Research,2012,55(1):41-58.
    [12]Kremer R J,Kussman R D.Soil quality in a pecan-kura clover alley cropping system in the Midwestern USA[J].Agroforestry Systems,2011,83(2):213-223.
    [13]Asawalam D O.Influence of cropping intensity on the production and properties of earthworm casts in a leucaena alley cropping system[J].Biology & Fertility of Soils,2006,42(6):506-512.
    [14]Peichl M,Thevathasan N V,Gordon A M,et al.Carbon sequestration potentials in temperate tree-based intercropping systems,southern Ontario,Canada[J].Agroforestry Systems,2006,66(3):243-257.
    [15]Latati M,Aouiche A,Tellah S,et al.Intercropping maize and common bean enhances microbial carbon and nitrogen availability in low phosphorus soil under Mediterranean conditions[J].European Journal of Soil Biology,2017,80:9-18.
    [16]Atallah S S,Gómez M I,Jaramillo J.A bioeconomic model of ecosystem services provision:coffee berry borer and shade-grown coffee in Colombia[J].Ecological Economics,2018,144:129-138.
    [17]冯会丽,吴正保,郭佳欢,等.灰枣3个优系果实膨大期的光合及荧光特性研究[J].新疆农业科学,2016,53(6):1014-1022.
    [18]郭佳欢,潘存德,冯会丽,等.枣麦间作系统中冬小麦的冠层光分布特征及产量研究[J].中国生态农业学报,2016,24(2):183-191.
    [19]鲁如坤.土壤农业化学分析[M].北京:中国农业出版社,1999:106-185.
    [20]Chapagain T,Riseman A.Nitrogen and carbon transformations,water use efficiency and ecosystem productivity in monocultures and wheat-bean intercropping systems[J].Nutrient Cycling in Agroecosystems,2015,101(1):107-121.
    [21]Bolte A,Villanueva I.Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce [Picea abies (L.) Karst.][J].European Journal Forest Research,2006,125(1):15-26.
    [22]Wilson J B.Shoot competition and root competition[J].Journal of Applied Ecology,1988,25(1):279-296.
    [23]DAY K J,JOHN E A,HUTCHINGS M J.The effects of spatially heterogeneous nutrient supply on yield,intensity of competition and root placement patterns in Briza media and Festuca ovina[J].Functional Ecology,2003,17(4):454-463.
    [24]Hautier Y,Hector A.Competition for light causes plant biodiversity loss after eutrophication[J].Science,2009,324(5927):636-638.
    [25]Baumann D T,Bastiaans L,Kropff M J.Effects of intercropping on growth and reproductive capacity of late-emerging Senecio vulgaris L.with special reference to competition for light[J].Annals of Botany,2001,87(2):209-217.
    [26]黎健龙,涂攀峰,陈娜,等.茶树与大豆间作效应分析[J].中国农业科学,2008,41(7):2040-2047.
    [27]Tahir E,Ahmed D M,Ard? J,et al.Changes in soil properties following conversion of Acacia senegal plantation to other land management systems in North Kordofan State,Sudan[J].Journal of Arid Environments,2009,73(4-5):499-505.
    [28]Bergeron M,Lacombe S,Bradley R L,et al.Reduced soil nutrient leaching following the establishment of tree-based intercropping systems in eastern Canada[J].Agroforestry Systems,2011,83(3):321-330.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.