时分波分复用无源光网络关键技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Key technologies of time and wavelength division multiplexing passive optical network
  • 作者:胡卫生 ; 义理林 ; 何浩 ; 李正璇 ; 李军 ; 毕美华
  • 英文作者:HU Weisheng;YI Lilin;HE Hao;LI Zhengxuan;LI Jun;BI Meihua;State Key Lab of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University;
  • 关键词:无源光网络 ; 直调直检 ; 啁啾管理 ; 受激拉曼散射
  • 英文关键词:passive optical network;;direct modulation and direct detection;;chirp management;;stimulated Raman scattering
  • 中文刊名:KJDB
  • 英文刊名:Science & Technology Review
  • 机构:上海交通大学区域光纤通信网与新型光通信系统国家重点实验室;
  • 出版日期:2016-08-28
  • 出版单位:科技导报
  • 年:2016
  • 期:v.34;No.502
  • 语种:中文;
  • 页:KJDB201616017
  • 页数:7
  • CN:16
  • ISSN:11-1421/N
  • 分类号:71-77
摘要
下一代光接入网采用波长堆叠同时提升单波长速率的方式提升网络容量。分析了直接调制技术在下一代无源光网络第二阶段(NG-PON2)和下一代以太无源光网络(NG-EPON)中的应用前景,讨论了啁啾管理技术和功率预算提升方案,并进行了系统演示。探讨了全业务接入网共存的无源光网络中波长间串扰,提出通过编码降低拉曼串扰的影响。
        To meet the fast-growing bandwidth requirement of end users, a time and wavelength division multiplexing technique is proposed to extend the network capacity. Meanwhile, the data rate of each wavelength should also be increased. In this paper, the feasibility of using DML in TWDM-PON systems is investigated, with an emphasis on chirp management and power budget improving techniques.Besides, the Raman crosstalks between the new- added and the traditional channels are analyzed with a proposed crosstalk mitigation solution based on Dicode coding.
引文
[1]Telecommunication Standardization Sector of ITU.40-Gigabit-capable passive optical networks(NG-PON2):General requirements:ITU-TG.989.1[S/OL].Geneva,Switzerland:ITU,2013[2016-06-29].http://www.itu.int/rec/T-REC-G.989.1-201303-I.
    [2]Telecommunication Standardization Sector of ITU.40-Gigabit-capable passive optical networks 2(NG-PON2):Physical media dependent(PMD)layer specification:G.989.2[S/OL].Geneva,Switzerland:ITU,2014[2016-06-30].http://www.itu.int/rec/T-REC-G.989.2/en.
    [3]Mahgerefteh D,Matsui Y,Zheng X Y,et al.Chirp managed laser and applications[J].IEEE Journal of Selected Topics in Quantum Electronics,2010,16(5):1126-1139.
    [4]Yi Lilin,Li Zhengxuan,Hu Weisheng,et al.First demonstration of symmetric 40 Gb/s TWDM-PON with 100 km passive reach and 1024-split using direct modulation and direct detection[C]//Asia Communications and Photonics Conference and Exhibition(ACP2013).Beijing,China:Optical Society of America,2013:PDP AF2C.3.
    [5]Bi Meihua,Xiao Shilin,He Hao,et al.Simultaneous DPSK demodulation and chirp management using delerferometer in symmetric 40 Gb/s capability TWDM-PON system[J].Optics Express,2013,21(14):16528-16535.
    [6]Li Zhengxuan,Yi Lilin,Hu Weisheng,Comparison of downstream transmitters for high loss budget of long-reach 10G-PON[C]//Optical Fiber Communication Conference and Exhibition.San Francisco,USA:Optical Society of America,2014:Tu2C.4.
    [7]Bi Meihua,Xiao Shilin,Yi Lilin,et al.Power budget improvement lowcost symmetric 40 Gb/s DML-based TWDM-PON[J].Optics Express,2014,22(6):6925-6933.
    [8]Li Zhengxuan,Yi Lilin,Wei Wei,et al.Symmetric 40 Gb/s,100 km passive reach TWDM-PON with 53-d B loss budget[J].Journal of Lightwave Technology,2014,32(21):3389-3396.
    [9]Lavery D,Torrengo E,Savory S.Bidirectional 10 Gbit/s long-reach WDM-PON using digital coherent receivers[C]//Optical Fiber Communication Conference.Los Angeles,California:Optical Society of America,2011:OTu B4.
    [10]Qian D,Mateo E,Huang M F.A 105 km reach fully passive 10G-PON using a novel digital OLT[C]//European Conference and Exhibition on Optical Communication.Amsterdam,Netherlands:Optical Society of America,2012:Tu.1.B.2.
    [11]Van Veen D T,Houtsma V E,Gnauck A H,et al.Demonstration of 40Gb/s TDM-PON Over 42 km with 31 dB optical power budget using an APD-based receiver[J].Journal of Lightwave Technology,2014,33(8):1675-1680.
    [12]Ye Zhicheng,Li Shengping,Cheng Ning,et al.Demonstration of highperformance cost-effective 100 Gb/s TWDM-PON using 4×25 Gb/s optical duobinary channels with 16 GHz APD and receiver-side postequalization[C]//European Conference and Exhibition on Optical Communications.Valencia,Spain:IEEE,2015:1-3.
    [13]Wei J L,Eiselt N,Griesser H,et al.First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10 G transmitter for next generation access applications[C]//European Conference and Exhibition on Optical Communications.Valencia,Spain:IEEE,2015:32-33.DOI:10.1109/ECOC.2015.7341692.
    [14]Li Zhengxuan,Yi Lilin,Wang Xiaodong,et al.28 Gb/s duobinary signal transmission over 40 km based on 10 GHz DML and PIN for 100Gb/s PON[J].Optics Express,2015,23(16):20249-20256.
    [15]CPRI.Common public radio interface(CPRI);interface specification version 7.0[S/OL].(2015-10-09)[2016-06-30].http://www.cpri.info/downloads/.
    [16]Li Jun,He Hao,Hu Weisheng.Theoretical and experimental analysis of interchannel crosstalk between TWDM and fronthaul wavelengths due to stimulated Raman scattering[J].Optics Express,2015,23(7):8809-8817.
    [17]Cheng N,Zhou M,Effenberger F J.10 Gbit/s delay modulation using a directly modulated DFB laser for a TWDM PON with converged services[Invited][J].Journal of Optical Communications and Networking,2015,7(1):A87-A96.
    [18]Tanaka A,Cvijetic N,Wang T.Beyond 5 d B nonlinear Raman crosstalk reduction via PSD control of 10 Gb/s OOK in RF-video coexistence scenarios for next-generation PON[C]//Optical Fiber Communication Conference.San Francisco,USA:Optical Society of America,2014:M3I.3.
    [19]Li Jun,Bi Meihua,He Hao,et al.Suppression of SRS induced crosstalk in RF-video overlay TWDM-PON system using dicodecoding[J].Optics Express,2014,22(18):21192-21198.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.