Al-Si-Mg(356)合金不稳态水平凝固过程中的显微组织演化(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructural evolution during unsteady-state horizontal solidification of Al-Si-Mg(356) alloy
  • 作者:J.O.LIMA ; C.R.BARBOSA ; I.A.B.MAGNO ; J.M.NASCIMENTO ; A.S.BARROS ; M.C.OLIVEIRA ; F.A.SOUZA ; O.L.ROCHA
  • 英文作者:J.O.LIMA;C.R.BARBOSA;I.A.B.MAGNO;J.M.NASCIMENTO;A.S.BARROS;M.C.OLIVEIRA;F.A.SOUZA;O.L.ROCHA;Federal Institute of Education, Science and Technology of Pará, IFPA;Federal University of Pará, Institute of Technology, UFPA;
  • 关键词:Al-Si-Mg合金 ; 显微组织演化 ; 枝晶间距 ; 瞬时热流
  • 英文关键词:Al-Si-Mg alloy;;microstructural transition;;dendrite arm spacing;;transient heat flow
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:Federal Institute of Education, Science and Technology of Pará, IFPA;Federal University of Pará, Institute of Technology, UFPA;
  • 出版日期:2018-06-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2018
  • 期:v.28
  • 基金:financial support provided by IFPA—Federal Institute of Education, Science and Technology of Pará, UFPA—Federal University of Pará, and CNPq—The Brazilian Research Council (Grants 472745/2013-1, 308784/2014-6 and 302846/2017-4);; FAPESPA—Amazon Foundation of Support to Study and Research (Grants ICAAF 064/2016);; CAPES—Coordination of Superior Level Staff Improvement, Brazil
  • 语种:英文;
  • 页:ZYSY201806002
  • 页数:11
  • CN:06
  • ISSN:43-1239/TG
  • 分类号:18-28
摘要
汽车和航空航天工业对减少运载工具重量的需求不断增加,这就需要发展改良的结构铝基合金。因此,本文作者研究设计Al-7%Si-0.3%Mg合金的水平凝固实验。研制并使用水冷式水平定向凝固装置。运用金相、光学显微镜、扫描电镜等传统技术表征材料的显微组织。用Thermo-Calc软件模拟含0.17%Fe(质量分数)合金的凝固路径。研究生长速度(V_L)、冷却速度(T_C)和凝固局部时间(t_(SL))等热力学参数对显微组织形成和枝晶显微组织演化的影响。当V_L和T_C值分别为0.82~0.98 mm/s和1.71~2.55°C/s时,柱状晶向等轴晶转变(CET)。通过测量一次和二次枝晶间距(分别为λ_1和λ_2)对显微组织进行表征。提出实验性定律:λ_(1,2)=f(V_L,T_C),λ_2=f(t_(SL));并观察到枝晶区包含以下共晶混合物:α(Al)+Si+π-Al_8Mg_3Fe Si_6+θ-Mg_2Si。
        The increasing demand for reducing vehicle weight in the automotive and aerospace industries has raised the need to develop improved structural aluminum-based alloys. Thus, horizontal solidification experiment with the Al-7%Si-0.3%Mg(mass fraction) alloy was carried out. A water-cooled horizontal directional solidification device was developed and used. Microstructural characterization was carried out using traditional techniques of metallography, optical microscopy and SEM microscopy. The Thermo-Calc software was used to generate the solidification path of the investigated alloy with addition of 0.17% Fe(mass fraction). The effects of the thermal parameters such as the growth rate(V_L), cooling rate(T_C) and solidification local time(t_(SL)) on the formation of the macrostructure and on the dendritic microstructure evolution were evaluated. A columnar to equiaxed transition(CET) was found for VL and TC values from 0.82 to 0.98 mm/s and from 1.71 to 2.55 °C/s, respectively. The microstructure was characterized by the measurement of the primary and secondary dendrite arm spacings(λ_1 and λ_2, respectively). Experimental laws of λ_1 =f(V_L, T_C) and λ_2 =f(t_(SL)) were proposed. It is observed that the interdendritic region is composed of the following eutectic mixture: a(Al)+Si+p-Al_8 Mg_3 Fe Si_6+q-Mg_2 Si.
引文
[1]BAMBERGER M,WEISS B Z,STUPEL M M.Heat flow and dendritic arm spacing in chill-cast Al-Si alloys[J].Materials Science and Technology,1987,3:49-56.
    [2]PERES M D,SIQUEIRA C A,GARCIA A.Macrostructural and microstructural development in Al-Si alloys directionally solidified under unsteady-state conditions[J].Journal of Alloys and Compounds,2004,381:168-181.
    [3]CARVALHO D B,GUIMAR?ES E C,MOREIRA,A L,MOUTINHO D J,DIAS FILHO J M,ROCHA O L.Characterization of the Al-3wt.%Si alloy in unsteady-state horizontal directional solidification[J].Materials Research,2013,16:874-883.
    [4]CARVALHO D L B,COSTA T A,MOREIRA A L S,SILVA M A P S,DIAS M,MOUTINHO D J C,ROCHA O L.Solidification thermal parameters and dendritic growth during the horizontal directional solidification of Al-7wt.%Si alloy[J].Magazine Minas School,2014,67:265-270.
    [5]MCCARTNEY D G,HUNT J D.Measurements of cell and primary dendrite arm spacings in directionally solidified aluminium alloys[J].Acta Metallurgica,1981,29:1851-1863.
    [6]KAYA H,?ADIRLI E,GüNDüZ M.Dendritic growth in an aluminum-silicon alloy[J].Journal of Materials Engineering and Performance,2007,16:12-21.
    [7]LI X,FAUTRELLE Y,REN Z.Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field[J].Acta Materialia,2007,55:3803-3813.
    [8]GüNDüZ M,?ADIRLI E.Directional solidification of aluminiumcopper alloys[J].Materials Science and Engineering A,2002,327:167-185.
    [9]SáF,ROCHA O L,SIQUEIRA C A,GARCIA A.The effect of solidification variables on tertiary dendrite arm spacing in unsteady-state directional solidification of Sn-Pb and Al-Cu alloys[J].Materials Science and Engineering A,2004,373:131-138.
    [10]CANTéM V,SPINELLI J E,CHEUNG N,GARCIA A.The correlation between dendritic microstructure and mechanical properties of directionally solidified hypoeutectic Al-Ni alloys[J].Metals and Materials International,2010,16:39-49.
    [11]KIRKWOOD D H.A simple model for dendritic arm coarsening during solidification[J].Materials Science and Engineering A,1985,73:1-4.
    [12]TRIVEDI R,KURZ W.Dendritic growth[J].International Materials Reviews,1994,39:49-74.
    [13]OKAMOTO T,KISHITAKE K.Dendritic structure in unidirectionally solidified aluminum,tin,and zinc base binary alloys[J].Journal of Crystal Growth,1975,29:137-146.
    [14]HUNT J D,LU S Z.Numerical modeling of cellular/dendritic array growth:Spacing and structure predictions[J].Metallurgical Transactions A,1996,27:611-623.
    [15]KURZ W,FISHER D J.Dendrite growth at the limit of stability:Tip and spacing[J].Acta Metallurgica,1981,29:11-20.
    [16]BOUCHARD D,KIRKALDY J S.Prediction of dendrite arm spacings in unsteady and steady-state heat flow of unidirectionally solidified binary alloys[J].Metallurgical and Materials Transactions B,1997,28:651-663.
    [17]ROCHA O L,SIQUEIRA C A,GARCIA A.Heat flow parameters affecting dendrite spacings during unsteady-state solidification of Sn-Pb and Al-Cu alloys[J].Metallurgical and Materials Transactions A,2003,34:995-1006.
    [18]KAYA H,B?YüK U,?ADIRLI E,MARASLI N.Measurements of the microhardness,electrical and thermal properties of the Al-Ni eutectic alloy[J].Materials and Design,2012,34:707-712.
    [19]KAYA H,BOYUK U,?ADIRLI E,MARASLI N.Influence of growth rate on microstructure,microhardness and electrical resistivity of directionally solidified Al-7wt%Ni hypoeutectic alloy[J].Metals and Materials International,2013,19:39-44.
    [20]?ADIRLI E.Effect of solidification parameters on mechanical properties of directionally solidified Al-rich Al-Cu alloys[J].Metals and Materials International,2013,19:411-422.
    [21]BARROS A S,MAGNO I L,SOUZA F A,MOREIRA A L,SILVA M A,ROCHA O L.Measurements of microhardness during transient horizontal directional solidification of Al-rich Al-Cu alloys:Effect of thermal parameters,primary dendrite arm spacing and Al2Cu intermetallic phase[J].Metals and Materials International,2015,21:429-439.
    [22]RAPPAZ M,BOETTINGER W J.On dendritic solidification of multicomponent alloys with unequal liquid diffusion coefficients[J].Acta Materialia,1999,47:3205-3219.
    [23]BRITO C,COSTA T A,VIDA T A,BERTELLI F,CHEUNG N,SPINELLI J E,GARCIA A.Characterization of dendritic microstructure,intermetallic phases,and hardness of directionally solidified Al-Mg and Al-Mg-Si alloys[J].Metallurgical and Materials Transactions A,2015,46:3342-3355.
    [24]CHEN R,SHI Y F,XU Q Y,LIU B C.Effect of cooling rate on solidification parameters and microstructure of Al-7Si-0.3Mg-0.15Fe alloy[J].Transactions of Nonferrous Metals Society of China,2014,24:1645-1652.
    [25]COSTA T A,MOREIRA A L,MOUTINHO D J,DIAS M,FERREIRA I L,SPINELLI J E,ROCHA O L,GARCIA A.Growth direction and Si alloying affecting directionally solidified structures of Al-Cu-Si alloys[J].Materials Science and Technology,2015,31:1103-1112.
    [26]GOMES L G,MOUTINHO D J,FERREIRA I L,ROCHA O L,GARCIA A.The growth of secondary dendritic arms in directionally solidified Al-Si-Cu alloys:A comparative study with binary Al-Si alloys[J].Applied Mechanics and Materials,2015,719-720:102-105.
    [27]ARAúJO E C,BARROS A S,KIKUCHI R H,SILVA A P,GON?ALVES F A,MOREIRA A L,ROCHA O L.The role of Si and Cu alloying elements on the dendritic growth and microhardness in horizontally solidified binary and multicomponent aluminumbased alloys[J].Metallurgical and Materials Transactions A,2017,48:1163-1175.
    [28]CHEN R,XUA Q,GUOB H,XIAB Z,WUB Q,LIUA.Correlation of solidification microstructure refining scale,Mg composition and heat treatment conditions with mechanical properties in Al-7Si-Mg cast aluminum alloys[J].Materials Science and Engineering A,2017,685:391-402.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.