采用长垂直接地极的TB型接地装置优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimized Design of TB Grounding Device by Using Long Vertical Grounding Electrode
  • 作者:周利军 ; 梅诚 ; 古维富 ; 陈斯翔
  • 英文作者:ZHOU Lijun;MEI Cheng;GU Weifu;CHEN Sixiang;School of Electrical Engineering, Southwest Jiaotong University;Foshan Power Supply Bureau of Guangdong Power Grid Co., Ltd.;
  • 关键词:输电线路杆塔 ; 接地装置 ; 垂直接地极 ; 最优长度 ; 冲击接地电阻
  • 英文关键词:power transmission line tower;;grounding device;;vertical grounding electrode;;optimal length;;impulse grounding resistance
  • 中文刊名:GDDL
  • 英文刊名:Guangdong Electric Power
  • 机构:西南交通大学电气工程学院;广东电网有限责任公司佛山供电局;
  • 出版日期:2019-03-07 11:47
  • 出版单位:广东电力
  • 年:2019
  • 期:v.32;No.253
  • 基金:广东电网有限责任公司科技项目(GDKJXM20162390)
  • 语种:中文;
  • 页:GDDL201902022
  • 页数:7
  • CN:02
  • ISSN:44-1420/TM
  • 分类号:135-141
摘要
针对输电线路杆塔TB型接地装置采用长垂直接地极的冲击降阻效果进行研究。设计了一种绝缘短屏蔽的方法定量计算垂直接地导体的最优长度,得到其与土壤电阻率之间的拟合关系;对垂直接地导体的优化布置方式进行理论分析,并通过实例验证了不同垂直接地导体布置方式下的冲击降阻效果。结果表明:利用绝缘短屏蔽的方法确定长垂直接地导体最优长度的方法可行;最优长度随着土壤电阻率的增大而增长;当接地装置尺寸较小时,由于屏蔽效应,延长单根垂直接地导体长度比增加垂直接地导体数量的冲击降阻效果好。
        This paper studies effect of impulse resistance reduction for the TB grounding device of power transmission line tower by using the long vertical grounding electrode. It designs a kind of insulated short shielding method to quantitatively calculate the optimal length of the vertical grounding conductor and obtain the fitting relationship between the optimal length and soil resistivity. Meanwhile, it analyzes optimal arrangement patters of the vertical grounding conductor theoretically and verifies effects of impulse resistance reduction under different arrangement patterns on the basis of actual examples. The results indicate it is feasible to determine the optimal length of the long vertical grounding electrode by using the insulated short shielding method. In addition, the soil resistivity is higher, the optimal length is longer. As the size of grounding device is small, the impulse resistance reduction effect of increasing length of single vertical grounding conductor is better than that of increasing numbers of the conductor due to shielding effect.
引文
[1] 何金良,曾嵘.电力系统接地技术[M].北京:科学出版社,2007:1-5.
    [2] OETTLE E E. A new general estimation curve for predicting the impulse impedance of concentrated earth electrodes[J]. IEEE Transactions on Power Delivery, 2002, 3(4):2020-2029.
    [3] 詹清华,陈铸成,李洪涛,等. 杆塔入地雷电流对周边鱼塘的影响及防护方法[J]. 广东电力,2018,31(3):128-134. ZHAN Qinghua, CHEN Zhucheng, LI Hongtao, et al. Influence of tower grounding lightning currents on surrounding fish ponds and protective measures[J]. Guangdong Electric Power,2018,31(3):128-134.
    [4] 郭在华,邢天放,吴广宁,等.冰冻土壤中垂直接地极的接地电阻变化规律[J].高电压技术,2014,40(3):1832-1839. GUO Zaihua, XING Tianfang, WU Guangning, et al. Grounding impedance change rule of vertical grounding electrode in frozen soil[J]. High Voltage Engineering, 2014, 40(3): 1832-1839.
    [5] 袁涛,唐妍,司马文霞,等.短导体对水平接地极冲击特性的影响[J].电工技术学报,2015,30(1):177-185. YUAN Tao, TANG Yan, SIMA Wenxia, et al. Simulation analysis of the impact characteristic of grounding electrode based on the current shielding effect[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 177-185.
    [6] 司马文霞,雷超平,袁涛,等.改善冲击散流时地中电场分布的接地降阻试验[J].高电压技术,2011,37(9):2294-2301. SIMA Wenxia, LEI Chaoping, YUAN Tao, et al. Experimental study on grounding impedance reduction based on improved grounding electric field distribution induced by the diffuser of impulse current[J]. High Voltage Engineering, 2011, 37(9): 2294-2301.
    [7] SIMA W, ZHU B, YUAN T, et al. Finite-element model of the grounding electrode impulse characteristics in a complex soil structure based on geometric coordinate transformation[J]. IEEE Transactions on Power Delivery, 2016, 31(1):96-102.
    [8] 朱彬,司马文霞,袁涛,等.基于地中电场分布的针刺式接地装置结构参数优化[J].电网技术,2015,39(10):2907-2914. ZHU Bin, SIMA Wenxia, YUAN Tao, et al. Structure parameter optimization of grounding device with needle-shaped conductors based on electric field distribution in soil[J]. Power System Technology, 2015, 39(10): 2907-2914.
    [9] 李景丽,蒋建东,李丽丽.针刺式接地装置降阻机制的仿真和试验研究[J].电网技术,2013,37(1):211-217. LI Jingli, JIANG Jiandong, LI Lili. Simulation and experiment study on impedance-reducing mechanism of grounding device with spicules [J]. Power System Technology, 2013, 37(1): 211-217.
    [10] HABJANIC A, TRLEP M. The simulation of the soil ionization phenomenon around the grounding system by the finite element method[J]. IEEE Transactions on Magnetics, 2006,42(4):867-870.
    [11] TRLEP M, HAMLER A, JESENIK M, et al. The FEM-BEM analysis of complex grounding systems[J]. IEEE Transactions on Magnetics, 2003, 39(3):1155-1158.
    [12] 单业才,咸日常,安建强,等.长垂直接地极改善接地网电气性能的作用[J].高电压技术,2000,26(1):51-53. SHAN Yecai, XIAN Richang, AN Jianqiang, et al. Long vertical grounding to improve the electrical performance of the grounding grid [J]. High Voltage Engineering, 2000, 26(1): 51-53.
    [13] 黄勇,陈先禄.长垂直接地极的利用系数和降阻效果研究[J].高电压技术,1995,21(4):17-19. HUANG Yong, CHEN Xianlu. The study of utilization factor and impedance reducing effect of long vertical grounding rods in power plants and substations [J]. High Voltage Engineering, 1995,21(4): 17-19.
    [14] 袁涛,司马文霞,李晓莉.两种常见接地极电流分布的探讨[J].高电压技术,2008,34(2):239-242. YUAN Tao, SIMA Wenxia, LI Xiaoli. Current distribution of two kinds grounding electrode[J]. High Voltage Engineering, 2008, 34(2): 239-242.
    [15] 张波,余绍峰,孔维政,等.接地装置雷电冲击特性的大电流试验分析[J].高电压技术,2011,37(3):548-554. ZHANG Bo, YU Shaofeng, KONG Weizheng, et al. Experimental analysis on impulse characteristics of grounding devices under high lightning current[J]. High Voltage Engineering, 2011, 37(3): 548-554.
    [16] 邓长征,周文俊,杨迎建,等.杆塔接地冲击特性的模拟试验研究[J].高电压技术,2014,40(9):2917-2922. DENG Changzheng, ZHOU Wenjun, YANG Yingjian, et al. Simulation test study of grounding impulse characteristics of transmission line tower [J]. High Voltage Engineering, 2014, 40(9): 2917-2922.
    [17] 吴锦鹏,曹方圆,张波,等.环形金属回流极对接地装置暂态特性的影响[J].清华大学学报(自然科学版),2014(12):1621-1625. WU Jinpeng, CAO Fangyuan, ZHANG Bo, et al. Influence of the return ring electrode on the transient characteristic of grounding devices [J]. Journal of Tsinghua University (Science and Technology), 2014 (12): 1621-1625.
    [18] 文韬,张乔根,赵军平,等.特高压GIS设备现场标准雷电冲击耐压试验技术的应用[J].电力工程技术,2017,36(1):30-33,53. WEN Tao,ZHANG Qiaogen,ZHAO Junping,et al. Application of on-site standard lightning impulse test technology for UHV GIS equipment[J]. Electric Power Engineering Teachnology, 2017,36(1):30-33,53.
    [19] HARID N.Experimental investigation of impulse characteristics of transmission line tower footings[J].Journal of Lightning Research,2012,4(1):36-44.
    [20] 徐伟,路永玲,唐梦颖,等. 江苏电网近年雷电活动及输电线路雷击跳闸分析[J]. 电力工程技术, 2017, 36(6):106-110. XU Wei, LU Yonglin, TANG Mengying,et al. Analysis of lightning activities and transmission line lightning strike tripping in Jiangsu power grid in recent years[J]. Electric Power Engineering Teachnology, 2017, 36(6):106-110.
    [21] 张阳,刘辰,胡全义,等.±500 kV直流输电线路雷电闪络风险等级评估及差异化防雷措施改进方案[J].内蒙古电力技术,2017,35(3):73-77,82. ZHANG Yang,LIU Chen,HU Quanyi,et al. Assessment of lightning flashover risk level of ±500 kV HVDC transmission line and improvement scheme of differentiated lightning protection measures[J].Inner Mongolia Electric Power,2017,35(3):73-77,82.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.