Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Non-polynomial Zig-Zag and ESL shear deformation theory to study advanced composites
  • 作者:J.L.MANTARI ; I.A.RAMOS ; J.C.MONGE
  • 英文作者:J.L.MANTARI;I.A.RAMOS;J.C.MONGE;Faculty of Mechanical Engineering, Instituto de investigación en ingeniería naval (IDIIN), National University of Engineering (UNI);Department of Mechanical Engineering, University of New Mexico;Faculty of Mechanical Engineering, Universidad de Ingeniería y Tecnología (UTEC);
  • 英文关键词:Analytical solution;;Composite materials;;CUF;;ESL;;Plate;;Trigonometric functions;;Zig-Zag effects
  • 中文刊名:HKXS
  • 英文刊名:中国航空学报(英文版)
  • 机构:Faculty of Mechanical Engineering, Instituto de investigación en ingeniería naval (IDIIN), National University of Engineering (UNI),Lima 15333, Peru;Department of Mechanical Engineering, University of New Mexico;Faculty of Mechanical Engineering, Universidad de Ingeniería y Tecnología (UTEC);
  • 出版日期:2019-04-15
  • 出版单位:Chinese Journal of Aeronautics
  • 年:2019
  • 期:v.32;No.157
  • 基金:‘‘Dise?o y optimización de dispositivos de drenaje para pacientes con glaucoma mediante el uso de modelos computacionales de ojos” founded by Cienciactiva, CONCYTEC, under the contract number N° 008-2016-FONDECYT;; financial support from the Peruvian Government
  • 语种:英文;
  • 页:HKXS201904012
  • 页数:15
  • CN:04
  • ISSN:11-1732/V
  • 分类号:140-154
摘要
The mechanical behavior of advanced composites can be modeled mathematically through unknown variables and Shear Strain Thickness Functions(SSTFs). Such SSTFs can be of polynomial or non-polynomial nature and some parameters of non-polynomial SSTFs can be optimized to get optimal results. In this paper, these parameters are called ‘‘r" and ‘‘s" and they are the argument of the trigonometric SSTFs introduced within the Carrera Unified Formulation(CUF). The Equivalent Single Layer(ESL) governing equations are obtained by employing the Principle of Virtual Displacement(PVD) and are solved using Navier method solution. Furthermore, trigonometric expansion with Murakami theory was implemented in order to reproduce the Zig-Zag effects which are important for multilayer structures. Several combinations of optimization parameters are evaluated and selected by different criteria of average error. Results of the present unified trigonometrical theory with CUF bases confirm that it is possible to improve the stress and displacement results through the thickness distribution of models with reduced unknown variables. Since the idea is to find a theory with reduced numbers of unknowns, the present method appears to be an appropriate technique to select a simple model. However these optimization parameters depend on the plate geometry and the order of expansion or unknown variables. So, the topic deserves further research.
        The mechanical behavior of advanced composites can be modeled mathematically through unknown variables and Shear Strain Thickness Functions(SSTFs). Such SSTFs can be of polynomial or non-polynomial nature and some parameters of non-polynomial SSTFs can be optimized to get optimal results. In this paper, these parameters are called ‘‘r" and ‘‘s" and they are the argument of the trigonometric SSTFs introduced within the Carrera Unified Formulation(CUF). The Equivalent Single Layer(ESL) governing equations are obtained by employing the Principle of Virtual Displacement(PVD) and are solved using Navier method solution. Furthermore, trigonometric expansion with Murakami theory was implemented in order to reproduce the Zig-Zag effects which are important for multilayer structures. Several combinations of optimization parameters are evaluated and selected by different criteria of average error. Results of the present unified trigonometrical theory with CUF bases confirm that it is possible to improve the stress and displacement results through the thickness distribution of models with reduced unknown variables. Since the idea is to find a theory with reduced numbers of unknowns, the present method appears to be an appropriate technique to select a simple model. However these optimization parameters depend on the plate geometry and the order of expansion or unknown variables. So, the topic deserves further research.
引文
1.Reissner E.The effect of transverse shear deformation on the bending of elastic plates.J Appl Mech Trans ASME 1945;12(2):69-77.
    2.Mindlin RD.Influence of rotary inertia and shear on flexural motions of isotropic,elastic plates.J Appl Mech Trans ASME1951;18(1):31-8.
    3.Reddy JN,Liu CF.A higher-order shear of deformation theory of laminated elastic shells.Int J Eng Sci 1985;23(3):319-30.
    4.Reddy JN.A simple higher-order theory for laminated composite plates.J Appl Mech Trans ASME 1984;51(4):745-52.
    5.Levinson M.An accurate,simple theory of the statics and dynamics of elastic plates.Mech Res Commun 1980;7(6):343-50.
    6.Librescu L.On the theory of anisotropic elastic shells and plates.Int J Solids Struct 1967;3(1):53-68.
    7.Levy M.Memoire sur la theorie des plaques elastiques planes.JMath Pures Appl 1877;30:219-306.
    8.Stein M.Nonlinear theory for plates and shells including the effects of transverse shearing.AIAA J 1986;24(9):1537-44.
    9.Touratier M.An efficient standard plate theory.Int J Eng Sci1991;29(8):901-16.
    10.Soldatos KP.A transverse shear deformation theory for homogeneous monoclinic plates.Acta Mech 1992;94(3-4):195-220.
    11.Karama M.Mechanical behavior or laminated composite beam by the new multilayer laminated composite structures model with transverse shear stress continuity.Acta Mech 2003;40:1525-46.
    12.Mantari JL,Guedes Soares C.A trigonometric plate theory with5-unknowns and stretching effect for advanced composite plates.Compos Struct 2014;107:396-405.
    13.Zenkour AM.Generalized shear deformation theory for bending analysis of functionally graded plates.Appl Math Modell 2006;30(1):67-84.
    14.Zenkour AM.Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded rectangular plate.Arch Appl Mech 2007;77(4):197-214.
    15.Zenkour AM.The effect of transverse shear and normal deformations on the thermomechanical bending of functionally graded sandwich plates.Int J Appl Mech 2009;1(4):667-707.
    16.Zenkour AM.Hygro-thermo-mechanical effects on FGM plates resting on elastic foundations.Compos Struct 2010;93:234-8.
    17.Mantari JL,Oktem AS,Guedes Soares C.Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher order shear deformation theory.Compos Struct2011;94:37-49.
    18.Mantari JL,Oktem AS,Guedes Soares C.A new trigonometric deformation theory for isotropic,laminated composite and sandwich plates.Int J Solids Struct 2012;49:43-53.
    19.Mantari JL,Granados EV,Guedes Soares C.Vibrational analysis of advanced composite plates resting on elastic foundation.Compos Part B Eng 2014;66:407-19.
    20.Mantari JL,Bonilla EM,Guedes Soares C.A new tangentialexponential higher order shear deformation theory for advanced composite plates.Compos Part B Eng 2014;60:319-28.
    21.Mantari JL,Guedes Soares C.Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shells.Compos Part B Eng 2014;56:126-36.
    22.Houari MSA,Tounsi A,Bessaim A,Mahmoud SR.A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates.Steel Compos Struct 2016;22(2):257-76.
    23.Belabed Z,Houari MSA,Tounsi A,Mahmoud SR,Anwar Be′g O.An efficient and simple higher order shear and normal deformation theory for functionally graded material(FGM)plates.Compos Part B Eng 2014;60:274-83.
    24.Belkorissat I,Houari MSA,Tounsi A,Adda Bedia EA,Mahmoud SR.On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model.Steel Compos Struct 2015;18(4):1063-81.
    25.Boukhari A,Atmane AH,Tounsi A,Adda Bedia EA,Mahmoud SR.An efficient shear deformation theory for wave propagation of functionally graded material plates.Struct Eng and Mech 2016;57(5):837-59.
    26.Bennoun M,Houari MSA,Tounsi A.A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates.Mech Adv Mater and Struct 2016;23(4):423-31.
    27.Bourada M,Kaci A,Houari MSA,Tounsi A.A new simple shear and normal deformations theory for functionally graded beams.St and Compos Struct 2015;18(2):409-23.
    28.Mahi A,Adda Bedia EA,Tounsi A.A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic,functionally graded,sandwich and laminated composite plates.Appl Math Model 2015;39(9):2498-508.
    29.Tounsi A,Houari MSA,Bessaim A.A new 3-unknowns nonpolynomial plate theory for buckling and vibration of functionally graded sandwich plate.Struct Eng Mech 2016;60(4):547-65.
    30.Ait Yahia S,Ait Atmane H,Houari MSA,Tounsi A.Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories.Struct Eng Mech 2015;53(6):1143-65.
    31.Hebali H,Tounsi A,Houari MSA,Bessaim A,Adda Bedia EA.Anew quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates.J Eng Mech ASCE 2014;140:374-83.
    32.El Meiche N,Tounsi A,Ziane N,Mechab I,Adda Bedia EA.Anew hyperbolic shear deformation for buckling and vibration of functionally graded sandwich plates.Int J Mech Sci 2011;50(3):237-47.
    33.Draiche K,Tounsi A,Hassan S.A refined theory with stretching effect for flexure analysis of laminated composite plates.Geom and Eng 2016;11(5):671-90.
    34.Carrera E.Evaluation of layerwise mixed theories for laminated plate analysis.AIAA J 1998;36(5):830-9.
    35.Carrera E.Developments,ideas,and evaluations based upon Reissner’s mixed variational theorem in the modelling of multilayered plates and shells.Appl Mech Rev 2001;54(4):301-29.
    36.Carrera E.Theories and finite elements for multilayered plates and shells:a unified compact formulation with numerical assessment and benchmarking.Arch Comput Methods Eng 2003;10(3):215-96.
    37.Ferreira AJM,Carrera E,Cinefra M,Roque CMC,Polit O.Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation,accounting for through-the-thickness deformations.Compos B Eng 2011;42(5):1276-84.
    38.Demasi L.13 hierarchy plate theories for thick and thin composite plates:The generalized unified formulation.Compos Struct 2008;84:256-70.
    39.Demasi L.16 mixed plate theories based on the generalized unified formulation Part I:Governing equations.Compos Struct2009;87:1-11.
    40.Demasi L.16 mixed plate theories based on the generalized unified formulation.Part II:Layerwise theories.Compos Struct2009;87:12-22.
    41.Demasi L.16mixed plate theories based on the generalized unified formulation.Part III:Advanced mixed high order shear deformation theories.Compos Struct 2009;87:183-94.
    42.Demasi L.16mixed plate theories based on the generalized unified formulation.Part IV:Zig-zag theories.Compos Struct2009;87:195-205.
    43.Demasi L.16mixed plate theories based on the generalized unified formulation.Part V:Results.Compos Struct 2009;88:1-16.
    44.Filippi M,Petrolo M,Valvano S,Carrera E.Analysis of laminated composites and sandwich structures by trigonometric,exponential and miscellaneous polynomials and a MITC9 plate element.Compos Struct 2016;150:103-14.
    45.Mantari JL,Ramos IA,Carrera E,Petrolo M.Static analysis of functionally graded plates using new non-polynomial displacement fields via Carrera Unified Formulation.Compos Part B Eng2016;89:127-42.
    46.Ramos IA,Mantari JL,Zenkour AM.Laminated composite plates subject to thermal load using trigonometrical theory based on Carrera Unified Formulation.Compos Struct 2016;143:324-35.
    47.Miglioretti F,Carrera E,Petrolo M.Computations and evaluations of higher order theories for free vibration analysis of beams.J Sound Vib 2012;331(19):4269-84.
    48.Carrera E,Miglioretti F,Petrolo M.Accuracy of refined finite elements for laminated plate analysis.Compos Struct 2010;93(5):1311-27.
    49.Carrera E,Petrolo M.On the effectiveness of higher-order terms in refined beam theories.J Appl Mech 2011;78(2)021013.
    50.Carrera E,Petrolo M.Guidelines and recommendation to construct theories for metallic and composite plates.AIAA J2010;48(12):2852-66.
    51.Carrera E,Miglioretti F.Selection of appropriate multilayered plate theories by using a genetic like algorithm.Compos Struct2012;94(3):1175-86.
    52.Mantari JL.General recommendations to develop 4-unknowns quasi-3D HSDTs to study FGMs.Aerosp Sci and Tech2016;58:559-70.
    53.Mantari JL,Monge JC.Buckling,free vibration and bending analysis of functionally graded sandwich plates based on an optimized hyperbolic unified formulation.Int J Mech Sci2016;119:170-86.
    54.Vidal P,Polit O.A refined sinus plate finite element for laminated and sandwich structures under mechanical and thermomechanical loads.Comput Methods Appl Mech Eng 2013;253:396-412.
    55.Carrera E,Filippi M,Zappino E.Laminated beam analysis by polynomial,trigonometric,exponential and zig-zag theories.Eur JMech-A/Solids 2013;41:58-69.
    56.Carrera E.Transverse normal stress effects in multilayered plates.J Appl Mech 1999;66(4):1004-12.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.