冷却路径对V-Ti微合金钢组织性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of cooling process on microstructure and mechanical properties in a V-Ti bearing steel
  • 作者:刘旭辉 ; 李光辉 ; 刘振宇
  • 英文作者:LIU Xu-hui;LI Guang-hui;LIU Zhen-yu;The State Key Laboratory of Rolling and Automation,Northeastern University;Technology Center,Hunan Valin Lianyuan Iron and Steel Co.,Ltd.;
  • 关键词:V-Ti微合金钢 ; 超快冷 ; 冷却速度 ; 显微组织 ; 硬度
  • 英文关键词:V-Ti bearing steel;;ultra fast cooling;;cooling rate;;microstructure;;hardness
  • 中文刊名:GANT
  • 英文刊名:Iron & Steel
  • 机构:东北大学轧制技术及连轧自动化国家重点实验室;湖南华菱涟源钢铁有限公司技术中心;
  • 出版日期:2019-07-15
  • 出版单位:钢铁
  • 年:2019
  • 期:v.54
  • 基金:国家自然科学基金青年基金资助项目(51604073)
  • 语种:中文;
  • 页:GANT201907016
  • 页数:6
  • CN:07
  • ISSN:11-2118/TF
  • 分类号:83-88
摘要
为了获得较大的沉淀强化增量,采用热模拟试验研究了UFC终冷温度和二阶段冷却速度对一种V-Ti微合金钢组织和硬度的影响规律。结果表明,协同控制UFC终冷温度和二阶段冷却速度可显著优化V-Ti微合金钢的组织性能。UFC终冷温度为750、700和650℃时,获得全铁素体组织的临界二阶段冷却速度分别为1.0、1.0和0.2℃/s。UFC终冷温度由750降低至650℃时,在二阶段冷却速度为0.2~1.0℃/s条件下,可将铁素体晶粒由10.5细化至8.4μm,二阶段冷却速度为5.0℃/s时,可将铁素体晶粒由10.5细化至5.1μm。在750和700℃较高UFC终冷温度条件下,适当提高二阶段冷却速度,在650℃较低冷却速度条件下,适当降低二阶段冷却速度,均可有效提高试验钢的维氏硬度,试验钢的最大维氏硬度可达到295HV。
        In order to obtain a larger increase in precipitation hardening,the effects of UFC final cooling temperature and second stage cooling rate on a V-Ti bearing steel were investigated using thermal simulation test.The results show that the microstructure and mechanical properties of the V-Ti bearing steel can be optimized significantly by controlling both UFC final cooling temperature and second stage cooling rate.The critical second stage cooling rates to obtain full ferrite microstructure have been estimated to be 1.0,1.0 and 0.2℃/s for the UFC final cooling temperatures of 750,700 and 650℃,respectively.At the second stage cooling rates of 0.2-1.0℃/s,the ferrite grain size can be refined from 10.5 to 8.4μm by lowering UFC final cooling temperature from 750 to 650℃.For a higher second stage cooling rate of 5.0℃/s,the ferrite grain size can be refined from 10.5 to 5.1μm.For the higher UFC final cooling temperatures of 750 and 700 ℃,the Vickers hardness can be enhanced by increasing second stage cooling rate,whereas for a lower UFC final cooling temperatures of 650℃,the Vickers hardness can be enhanced by lowering second stage cooling rate.Moreover,the Vickers hardness of the steel can reach 295 HV.
引文
[1] Yoshimasa F,Tsuyoshi S,Kunikazu T,et al.Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides[J].ISIJ International,2004,44(11):1945.
    [2]陈俊,吕梦阳,唐帅,等.V-Ti微合金钢的组织性能及相间析出行为[J].金属学报,2014,50(5):524.(CHEN Jun,LMeng-yang,TANG Shuai,et al.Microstructure,mechanical properties and interphase precipitation behaviors in V-Ti microalloyed steel[J].Acta Metallurgica Sinica,2014,50(5):524.)
    [3] CHEN Jun,LMeng-yang,TANG Shuai,et al.Influence of cooling paths on microstructural characteristics and precipitation behaviors in a low carbon V-Ti microalloyed steel[J].Materials Science and Engineering A,2014,594:389.
    [4] Yen H W,Chen P Y,Huang C Y,et al.Interphase precipitation of nanometer-sized carbides in a titanium-molybdenumbearing low-carbon steel[J].Acta Materialia,2011,59:6264.
    [5] Okamoto R,Borgenstam A,gren J.Interphase precipitation in niobium-microalloyed steels[J].Acta materialia,2010,58:4783.
    [6] Pereloma E V,Hazra S S,Zhu C,et al.Atom probe analysis of clusters and precipitates in severely deformed and annealed interstitial free steel[J].Materials Science and Technology,2011,27:735.
    [7] Timokhina I B,Hodgson P D,Ringer S P,et al.Precipitate characterisation of an advanced high-strength low-alloy(HSLA)steel using atom probe tomography[J].Scripta Materialia,2007,56:601.
    [8]张超,苏杰,梁剑雄,等.超高强度不锈钢沉淀行为研究进展[J].钢铁,2018,53(4):48.(ZHANG Chao,SU Jie,LIANG Jian-xiong,et al.Research development of precipitation behavior of ultra high strength stainless steels[J].Iron and Steel,2018,53(4):48.)
    [9]康俊雨,孙新军,李昭东,等.TiC和VC在低碳马氏体钢回火中的析出和粗化[J].钢铁,2015,50(10):64.(KANG Junyu,SUN Xin-jun,LI Zhao-dong,et al.Precipitation and coarsening of TiC and VC in tempering process of low carbon martensite steels[J].Iron and Steel,2015,50(10):64.)
    [10]王国承,王铁明,尚德礼,等.超细第二相粒子强化钢铁材料的研究进展[J].钢铁研究学报,2007,19(6):5.(WANG Guo-cheng,WANG Tie-ming,SHANG De-li,et al.Progress of strengthened steel with superfine second phase particle[J].Journal of Iron and Steel Research,2007,19(6):5.)
    [11]刘旭辉,曾斌,梁亮,等.回火工艺对900 MPa级热轧卷板组织与性能的影响[J].钢铁,2018,53(10):74.(LIU Xu-hui,ZENG Bin,LIANG Liang,et al.Effect of tempering process on microstructure and mechanical properties of 900 MPa grade hot rolled steel[J].Iron and Steel,2018,53(10):74.)
    [12]陈润农,李昭东,张明亚,等.铌微合金化极低屈服点钢的组织与性能[J].钢铁,2019,54(1):63.(CHEN Run-nong,LI Zhao-dong,ZHANG Ming-ya,et al.Microstructure and properties of Nb microalloyed ultra low yield point steel[J].Iron and Steel,2019,54(1):63.)
    [13]刘宝喜,高彩茹,郑文超,等.高韧性桥梁钢Q420qD的开发[J].中国冶金,2018,28(2):67.(LIU Bao-xi,GAO Cai-ru,ZHENG Wen-chao,et al.Development of Q420qD bridge steel with high toughness[J].China Metallurgy,2018,28(2):67.)
    [14] Taylor K A.Solubility products for titanium-,vanadium-,and niobium-carbide in ferrite[J].Scripta Metallurgica et Materialia,1995,32(1):7.
    [15] Narita K.Physical chemistry of the groups IVa(Ti,Zr),Va(V,Nb,Ta)and the rare earth elements in steel[J].Transactions of the Iron and Steel Institute of Japan,1975,15:145.
    [16] ISO Copyright Office.ISO 6507-1:2018 Metallic MaterialsVickers Hardness Test-Part 1:Test Method[S].Switzerland:[s.n.],2018.
    [17] CHEN J,TANG S,LIU Z Y,et al.Influence of molybdenum content on transformation behavior of high performance bridge steel during continuous cooling[J].Materials Design,2013,49:465.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.