砂-粉混合料小应变剪切模量弯曲元试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on small-strain shear modulus of sand-silt mixtures by bender element testing
  • 作者:吴琪 ; 杨文保 ; 朱雨萌 ; 赵凯 ; 陈国兴
  • 英文作者:Wu Qi;Yang Wenbao;Zhu Yumeng;Zhao Kai;Chen Guoxing;Institute of Geotechnical Engineering,Nanjing Tech University;
  • 关键词:砂-粉混合料 ; 小应变剪切模量 ; 细粒含量 ; 修正Hardin模型
  • 英文关键词:sand-silt mixtures;;small-strain shear modulus;;fine content;;modified Hardin model
  • 中文刊名:DNDX
  • 英文刊名:Journal of Southeast University(Natural Science Edition)
  • 机构:南京工业大学岩土工程研究所;
  • 出版日期:2018-11-20
  • 出版单位:东南大学学报(自然科学版)
  • 年:2018
  • 期:v.48
  • 基金:国家自然科学基金资助项目(51438004,51608267);; 国家重点研发计划资助项目(2017YFC1500400)
  • 语种:中文;
  • 页:DNDX201806011
  • 页数:9
  • CN:06
  • ISSN:32-1178/N
  • 分类号:84-92
摘要
为探究细粒含量f_c、相对密度D_r以及初始有效围压σ'3c对饱和砂-粉混合料小应变剪切模量G_(max)的影响,对具有不同f_c,D_r和σ'_(3c)的混合料开展了一系列弯曲元试验.试验发现:随着f_c的增加,Dr=35%,50%的混合料的G_(max)先减小后略有增大,Dr=60%的混合料的G_(max)逐渐减小;当Dr相同时,具有不同fc的混合料的G_(max)都随σ'_(3c)的增大而增大,且G_(max)随σ'_(3c)的增长速率基本保持不变;当σ'_(3c)相同时,G_(max)随孔隙比的增大而减小,f_c对G_(max)随孔隙比增大而减小的速率有明显影响.分析表明:当f_c确定时,Hardin模型能很好地预测G_(max),但随f_c的增大,模型参数A先减小后增大;考虑f_c,e和σ'_(3c)对G_(max)影响的修正Hardin模型能较好地预测不同类别砂-粉混合料的G_(max),且G_(max)预测值的误差基本小于10%.
        In order to investigate the influences of the fine content fc,relative density D_r,and initial effective confining pressure σ'_(3c) on the small-strain shear modulus G_(max) of sand-silt mixtures,a series of bender element tests were performed on saturated sand-silt mixtures with various fc,Dr and σ'_(3c).The test results show that,as f_c increases,G_(max) of the mixtures with D_r = 35% or 50% first decreases and then increases slightly,while G_(max) for D_r = 60% case presents a decreasing tendency. σ'_(3c) causes an increase in G_(max) with different f_c at a given Dr,and the growth rate of G_(max) with σ'_(3c) remains basically unchanged. In addition,G_(max) decreases with the increase of the void ratio at a fixed σ'_(3c),and f_c has a strong influence on the decreasing rate of G_(max) at a constant σ'_(3c). The testing results reveal that Gmax for a specified f_c case can be estimated reasonably using the Hardin model. However,as f_c increases,the best-fitting parameter A of the Hardin model first decreases and then increases. The modified Hardin model,considering the influences of fc,σ'_(3c) and e,can be used to predict Gmax for different types of sand-silt mixtures,and the errors of the predicted Gmax are basically less than 10%.
引文
[1]Yang J,Yan X R.Site response to multi-directional earthquake loading:A practical procedure[J].Soil Dynamics and Earthquake Engineering,2009,29(4):710-721.DOI:10.1016/j.soildyn.2008.07.008.
    [2]Andrus R D,Stokoe K H II.Liquefaction resistance of soils from shear-wave velocity[J].Journal of Geotechnical and Geoenvironmental Engineering,2000,126(11):1015-1025.DOI:10.1061/(asce)1090-0241(2000)126:11(1015).
    [3]孔梦云,陈国兴,李小军,等.以剪切波速与地表峰值加速度为依据的地震液化确定性及概率判别法[J].岩土力学,2015,36(5):1239-1252,1260.DOI:10.16285/j.rsm.2015.05.002.Kong Mengyun,Chen Guoxing,Li Xiaojun,et al.Shear wave velocity and peak ground acceleration based deterministic and probabilistic assessment of seismic soil liquefaction potential[J].Rock and Soil Mechanics,2015,36(5):1239-1252,1260.DOI:10.16285/j.rsm.2015.05.002.(in Chinese)
    [4]Clayton C R I.Stiffness at small strain:Research and practice[J].Géotechnique,2011,61(1):5-37.DOI:10.1680/geot.2011.61.1.5.
    [5]Hardin B O,Black W L.Sand stiffness under various triaxial stresses[J].Journal of Soil Mechanics&Foundations Division,1966,92(2):27-42.
    [6]McDowell G R,Bolton M D.Micro mechanics of elastic soil.[J].Soils and Foundations,2001,41(6):147-152.DOI:10.3208/sandf.41.6_147.
    [7]Drnevich V P.Resonant-column testing-problems and solutions[M]//Dynamic Geotechnical Testing.Philadelphia,USA:ASTM International,1978:384-398.
    [8]Ishihara K.Soil behaviour in earthquake geotechnics[M].Oxford,UK:Clarendon Press,1996:85-107.
    [9]Taiebat M,Dafalias Y F.SANISAND:Simple anisotropic sand plasticity model[J].International Journal for Numerical and Analytical Methods in Geomechanics,2008,32(8):915-948.DOI:10.1002/nag.651.
    [10]Goudarzy M,Rahemi N,Rahman M M,et al.Predicting the maximum shear modulus of sands containing nonplastic fines[J].Journal of Geotechnical and Geoenvironmental Engineering,2017,143(9):06017013.DOI:10.1061/(asce)gt.1943-5606.0001760.
    [11]Iwasaki T,Tatsuoka F.Effects of grain size and grading on dynamic shear moduli of sands[J].Soils and Foundations,1977,17(3):19-35.DOI:10.3208/sandf1972.17.3_19.
    [12]Yamashita S,Kawaguchi T,Nakata Y,et al.Interpretation of international parallel test on the measurement of gmax using bender elements[J].Soils and Foundations,2009,49(4):631-650.DOI:10.3208/sandf.49.631.
    [13]陈云敏,周燕国,黄博.利用弯曲元测试砂土剪切模量的国际平行试验[J].岩土工程学报,2006,28(7):874-880.DOI:10.3321/j.issn:1000-4548.2006.07.013.Chen Yunmin,Zhou Yanguo,Huang Bo.International parallel test on the measurement of shear modulus of sand using bender elements[J].Chinese Journal of Geotechnical Engineering,2006,28(7):874-880.DOI:10.3321/j.issn:1000-4548.2006.07.013.(in Chinese)
    [14]Carraro J A H,Prezzi M,Salgado R.Shear strength and stiffness of sands containing plastic or nonplastic fines[J].Journal of Geotechnical and Geoenvironmental Engineering,2009,135(9):1167-1178.DOI:10.1061/(asce)1090-0241(2009)135:9(1167).
    [15]Iwasaki T,Tatsuoka F.Effects of grain size and grading on dynamic shear moduli of sands[J].Soils and Foundations,1977,17(3):19-35.DOI:10.3208/sandf1972.17.3_19.
    [16]中华人民共和国水利部.SL237-1999土的工程分类标准[S].北京:中国水利水电出版社,2007.
    [17]Polito C P,Martin J RⅡ.Effects of nonplastic fines on the liquefaction resistance of sands[J].Journal of Geotechnical and Geoenvironmental Engineering,2001,127(5):408-415.DOI:10.1061/(asce)1090-0241(2001)127:5(408).
    [18]Hsiao D H,Phan V T A,Hsieh Y T,et al.Engineering behavior and correlated parameters from obtained results of sand-silt mixtures[J].Soil Dynamics and Earthquake Engineering,2015,77:137-151.DOI:10.1016/j.soildyn.2015.05.005.
    [19]Salgado R,Bandini P,Karim A.Shear strength and stiffness of silty sand[J].Journal of Geotechnical and Geoenvironmental Engineering,2000,126(5):451-462.DOI:10.1061/(asce)1090-0241(2000)126:5(451).
    [20]Choo H,Burns S E.Shear wave velocity of granular mixtures of silica particles as a function of finer fraction,size ratios and void ratios[J].Granular Matter,2015,17(5):567-578.DOI:10.1007/s10035-015-0580-2.
    [21]Huang Y T,Huang A B,Kuo Y C,et al.A laboratory study on the undrained strength of a silty sand from Central Western Taiwan[J].Soil Dynamics and Earthquake Engineering,2004,24:733-743.DOI:10.1016/j.soildyn.2004.06.013.
    [22]Payan M,Khoshghalb A,Senetakis K,et al.Effect of particle shape and validity of G max models for sand:Acritical review and a new expression[J].Computers and Geotechnics,2016,72:28-41.DOI:10.1016/j.compgeo.2015.11.003.
    [23]Shirley D J,Hampton L D.Shear-wave measurements in laboratory sediments[J].Journal of the Acoustical Society of America,1978,63(2):607-613.DOI:10.1121/1.381760.
    [24]姬美秀,陈云敏,黄博.弯曲元试验高精度测试土样剪切波速方法[J].岩土工程学报,2003,25(6):732-736.DOI:10.3321/j.issn:1000-4548.2003.06.019.Ji Meixiu,Chen Yunmin,Huang Bo.Method for precisely determining shear wave velocity of soil from bender element tests[J].Chinese Journal of Geotechnical Engineering,2003,25(6):732-736.DOI:10.3321/j.issn:1000-4548.2003.06.019.(in Chinese)
    [25]Lee J S,Santamarina J C.Bender elements:Performance and signal interpretation[J].Journal of Geotechnical and Geoenvironmental Engineering,2005,131(9):1063-1070.DOI:10.1061/(asce)1090-0241(2005)131:9(1063).
    [26]Chaney R,Demars K,Brignoli E,et al.Measurement of shear waves in laboratory specimens by means of piezoelectric transducers[J].Geotechnical Testing Journal,1996,19(4):384-397.DOI:10.1520/gtj10716j.
    [27]柏立懂,项伟,Savidis S A,等.干砂最大剪切模量的共振柱与弯曲元试验[J].岩土工程学报,2012,34(1):184-188.Bai Lidong,Xiang Wei,Savidis A S,et al.Resonant column and bender element tests on maximum shear modulus of dry sand[J].Chinese Journal of Geotechnical Engineering,2012,34(1):184-188.(in Chinese)
    [28]Gu X Q,Yang J.A discrete element analysis of elastic properties of granular materials[J].Granular Matter,2013,15(2):139-147.DOI:10.1007/s10035-013-0390-3.
    [29]Ishihara K.Liquefaction and flow failure during earthquakes[J].Géotechnique,1993,43(3):351-451.DOI:10.1680/geot.1993.43.3.351.
    [30]Skempton A W.The pore-pressure coefficients A and B[J].Géotechnique,1954,4(4):143-147.DOI:10.1680/geot.1954.4.4.143.
    [31]Thevanayagam S,Martin G R.Liquefaction in silty soils:Screening and remediation issues[J].Soil Dynamics and Earthquake Engineering,2002,22(9/10/11/12):1035-1042.DOI:10.1016/s0267-7261(02)00128-8.
    [32]Yang J,Liu X.Shear wave velocity and stiffness of sand:The role of non-plastic fines[J].Géotechnique,2016,66(6):500-514.DOI:10.1680/jgeot.15.p.205.
    [33]Wichtmann T,Triantafyllidis T.Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus gmax[J].Journal of Geotechnical and Geoenvironmental Engineering,2009,135(10):1404-1418.DOI:10.1061/(asce)gt.1943-5606.0000096.
    [34]Rahman M M,Lo S R,Gnanendran C T.On equivalent granular void ratio and steady state behaviour of loose sand with fines[J].Canadian Geotechnical Journal,2008,45(10):1439-1456.DOI:10.1139/t08-064.
    [35]Payan M,Senetakis K,Khoshghalb A,et al.Characterization of the small-strain dynamic behaviour of silty sands:Contribution of silica non-plastic fines content[J].Soil Dynamics and Earthquake Engineering,2017,102:232-240.DOI:10.1016/j.soildyn.2017.08.008.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.