分子间相互作用对聚肽共聚物/聚苯乙烯衍生物共混体系自组装形貌影响的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Intermolecular Interactions on Self-assembled Structures of Polypeptide-based Copolymer/Polystyrene Derivatives Blends
  • 作者:张朔 ; 蔡春华 ; 黄琦婧 ; 林嘉平 ; 许占文
  • 英文作者:Shuo Zhang;Chun-hua Cai;Qi-jing Huang;Jia-ping Lin;Zhan-wen Xu;School of Materials Science and Engineering, East China University of Science and Technology, Shanghai Key Laboratory of Advanced Polymeric Materials;
  • 关键词:自组装 ; 共混 ; 分子间相互作用 ; 聚肽 ; 形貌转变
  • 英文关键词:Self-assembly;;Blends;;Intermolecular interaction;;Polypeptides;;Morphological transition
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:华东理工大学材料科学与工程学院上海市先进聚合物重点实验室;
  • 出版日期:2017-12-05 09:48
  • 出版单位:高分子学报
  • 年:2018
  • 基金:国家自然科学基金(基金号51573049,21234002,21474029)资助项目
  • 语种:中文;
  • 页:GFXB201801012
  • 页数:10
  • CN:01
  • ISSN:11-1857/O6
  • 分类号:113-122
摘要
合成了两亲性的聚(γ-苄基-L-谷氨酸酯)-b-聚乙二醇(PBLG-b-PEG)聚肽刚-柔嵌段共聚物和聚苯乙烯(PS)均聚物及多种聚苯乙烯衍生物,包括聚(4-乙酰氧基苯乙烯)(PAS)均聚物、聚(4-羟基苯乙烯)(PVPh)均聚物和聚(苯乙烯-co-4-乙酰氧基苯乙烯)(P(S-co-AS))共聚物.用傅里叶变换红外光谱(FTIR)、核磁共振氢谱(1H-NMR)和凝胶渗透色谱(GPC)等表征了聚合物的结构、分子量及分布.采用共溶剂溶解、选择性溶剂透析的方法,制备了PBLG-b-PEG嵌段共聚物与不同PS衍生物(包括PS均聚物)共混体系的自组装聚集体,利用透射电子显微镜(TEM)和扫描电子显微镜(SEM)等表征了自组装体的形貌和结构.研究发现,不同的分子间相互作用(如π-π共轭作用、偶极-偶极相互作用、氢键作用等)对共混体系的自组装形貌有显著的影响.PBLG-b-PEG/PS共混体系自组装可形成表面具有条纹结构的"毛线球"聚集体,该体系中PBLG和PS之间形成π-π共轭作用,相互作用强度相对较弱;PBLG-b-PEG/PAS共混体系自组装可形成表面基本光滑并有轻微凹陷的球形聚集体,该体系中PBLG和PAS之间除了π-π共轭作用,还可形成相对较强的偶极-偶极相互作用;而PBLG-b-PEG/PVPh共混体系自组装得到了囊泡,该体系中PBLG与PVPh之间可形成π-π共轭和氢键作用,相互作用强度进一步增强.对于PBLG-b-PEG/P(S-co-AS)共混体系,可通过改变P(S-co-AS)共聚物中AS摩尔分数和制备温度来调控自组装聚集体表面的条纹形貌.根据PBLG链段与不同PS衍生物(包括PS均聚物)之间不同的分子间相互作用,提出了上述聚集体形貌转变的机理.
        Herein, poly(γ-benzyl-L-glutamate)-b-poly(ethylene glycol)(PBLG-b-PEG) polypeptide-based rod-coil block copolymer, polystyrene homopolymer(PS), and PS derivatives, such as poly(4-acetoxystyrene)(PAS) homopolymer, poly(vinylphenol)(PVPh) homopolymer, and poly(styrene-co-4-acetoxystyrene)(P(S-coAS)) copolymer with various AS molar contents, were synthesized. The molecular structures(molecular weight, polydispersity index and composition) of the polymers were characterized by Fourier transform infrared spectroscopy(FTIR), nuclear magnetic resonance spectroscopy(1 H-NMR) and gel permeation chromatography(GPC). Self-assembly behaviors of the polymer blends composed of PBLG-b-PEG copolymer and PS derivatives(including PS homopolymer) were explored. The self-assembled aggregates were prepared by a dialysis method with water used as selective solvent. The morphologies and structures of the formed aggregates were investigated by transmission electron microscopy(TEM) and scanning electron microscopy(SEM). The influence of intermolecular interaction between polymers(e.g., π-π interaction between PBLG and PS, PAS and PVPh, dipole-dipole interaction between PBLG and PAS, and hydrogen-bonding interaction between PBLG and PVPh) on self-assembly behaviors of the polymer blends was investigated. With the strength of intermolecular interaction increasing in the order of PBLG/PS < PBLG/PAS < PBLG/PVPh, a morphological transition was observed. With relatively weak intermolecular interaction, strip-pattern-spheres were formed in the PBLG-b-PEG/PS blends. For PBLG-b-PEG/PAS blends, as the dipole-dipole interaction was stronger than π-π interaction, the strips disappeared and cavity was observed. As the intermolecular interaction was further enhanced by hydrogen bonding, vesicles were self-assembled in PBLG-b-PEG/PVPh blends. Additionally, the surface morphology of the spherical aggregates was tuned by AS molar content and temperature for PBLG-b-PEG/P(S-co-AS) blends. With increasing AS molar content, the dipole-dipole interaction between PBLG and P(S-co-AS) increased, leading to less regular strip patterns on aggregates surfaces compared with PBLG-b-PEG/PS polymer blends. As temperature increases, the strip patterns became more regular due to the weaker interaction between PBLG and PSAS segments.
引文
1 Groschel A H,Walther A,Lobling T I,Schacher F H,Schmalz H,Muller A H E.Nature,2013,503:247-251
    2 Groschel A H,Muller A H E.Nanoscale,2015,7:11841-11876
    3 Zhuang Z L,Jiang T,Lin J P,Gao L,Yang C Y,Wang L Q,Cai C H.Angew Chem Int Ed,2016,55:12522-12527
    4 Yang C Y,Gao L,Lin J P,Wang L Q,Cai C H,Wei Y H,Li Z B.Angew Chem Int Ed,2017,56:5546-5550
    5 Cai C H,Lin J P,Lu Y Q,Zhang Q,Wang L Q.Chem Soc Rev,2016,45:5985-6012
    6 Xu F G,Wu D D,Huang Y J,Wei H,Gao Y,Feng X L,Yan D Y,Mai Y Y.ACS Macro Lett,2017,6:426-430
    7 Long Meilin(隆美林),Zhang Ke(张科),Chen Yongming(陈永明),Zhu Wen(朱雯).Acta Polymerica Sinica(高分子学报),2016,(9):1238-1246
    8 Lin X,He X H,Hu C Q,Chen Y X,Mai Y Y,Lin S L.Polym Chem,2016,7:2815-2820
    9 Mai Y Y,Eisenberg A.Chem Soc Rev,2012,41:5969-5985
    10 Wang L Q,Lin J P,Zhang X.Polymer,2013,54:3427-3442
    11 Zhang Z,Li H D,Huang X Y,Chen D Y.ACS Macro Lett,2017,6:580-585
    12 Wu Qiong(吴琼),Xu Pengxiang(徐鹏翔),Wang Liquan(王立权),Cai Chunhua(蔡春华),Lin Jiaping(林嘉平),Lu Yingqing(陆映晴),Tian Xiaohui(田晓慧).Acta Polymerica Sinica(高分子学报),2017,(3):471-481
    13 Xu Jiangfei(徐江飞),Zhang Xi(张希).Acta Polymerica Sinica(高分子学报),2017,(1):37-49
    14 Liu Y,Lor C,Fu Q,Pan D,Ding L,Liu J,Lu J.J Phys Chem C,2010,114:5767-5772
    15 Huang X J,Xiao Y,Lang M D.J Colloid Interf Sci,2011,364:92-99
    16 Kakkar D,Mazzaferro S,Thevenot J,Schatz C,Bhatt A,Dwarakanath B S,Singh H,Mishra A K,Lecommandoux S.Macromol Biosci,2015,15:124-137
    17 Shan Y B,Luo T,Peng C,Sheng R L,Cao A M,Cao X Y,Shen M W,Guo R,Tomás H,Shi X Y.Biomaterials,2012,33:3025-3035
    18 Qi Meiwei(戚美微),Huang Wei(黄卫),Xiao Guyu(肖谷雨),Zhu Xinyuan(朱新远),Gao Chao(高超),Zhou Yongfeng(周永丰).Acta Polymerica Sinica(高分子学报),2017,(2):214-228
    19 Xue J X,Guan Z,Lin J P,Cai C H,Zhang W J,Jiang X Q.Small,2017,13:1604214
    20 Shao Y,Jia H Y,Cao T Y,Liu D S.Acc Chem Res,2017,4:659-668
    21 Liu Y J,Zhang Y F,Wang Z Y,Wang J,Wei K C,Chen G S,Jiang M.J Am Chem Soc,2016,38:12387-12394
    22 Lua B B,Wei L L,Meng G H,Hou J,Liu Z Y,Guo X H.Chinese J Polym Sci,2017,35(8):924-938
    23 Reuther J F,Siriwardane D A,Campos R,Novak B M.Macromolecules,2015,48:6890-6899
    24 Quan C Y,Wu D Q,Chang C,Zhang G B,Cheng S X,Zhang X Z,Zhuo R X.J Phys Chem C,2009,113:11262-11267
    25 Dag A,Zhao J C,Stenzel M H.ACS Macro Lett,2015,4:579-583
    26 Wu X R,Wu C W,Zhang C.Chinese J Polym Sci,2017,35(1):1-24
    27 He C L,Zhuang X L,Tang Z H,Tian H Y,Chen X S.Adv Healthcare Mater,2012,1:48-78
    28 Deng C,Wu J T,Cheng R,Meng F H,Klok H A,Zhong Z Y.Prog Polym Sci,2014,39:330-364
    29 Zhang S S,Li Z B.J Polym Sci,Part B:Polym Phys,2013,51:546-555
    30 Qiu H B,Hudson Z M,Winnik M A,Manners I.Science,2015,347:1329-1332
    31 Cambridge G,Gonzalez Alvarez M J,Guerin G,Manners I,Winnik M A.Macromolecules,2015,48:707-716
    32 Cai C H,Lin J P,Zhu X Y,Gong S T,Wang X S,Wang L Q.Macromolecules,2016,49:15-22
    33 Ma Shiying(马世营),Wang Rong(汪蓉).Acta Polymerica Sinica(高分子学报),2016,(8):1030-1041
    34 Zhao X J,Yu X L,Lee Y I,Liu H G.Langmuir,2016,32:11819-11826
    35 Tanaka H,Hasegawa H,Hashimoto T.Macromolecules,1991,24:240-251
    36 Hashimoto T,Tanaka H,Hasegawa H.Macromolecules,1990,23:4378-4386
    37 Salim N V,Guo Q P.J Phys Chem B,2011,115:9528-9536
    38 Wang X J,Chen J H,Hong K L,Mays J W.ACS Macro Lett,2012,1:743-747
    39 Hickey R J,Luo Q J,Park S J.ACS Macro Lett,2013,2:805-808
    40 Hoheisel T N,Hur K,Wiesner U B.Prog Polym Sci,2015,40:3-32
    41 Wang Jian(王健),Lu Yuyuan(卢宇源),Xu Yuci(徐玉赐),Ruan Yongjin(阮永金),Li Liangyi(李良一),An Lijia(安立佳).Acta Polymerica Sinica(高分子学报),2016,(3):271-287
    42 Looser J E,Lohmann E,Jiang Y M,Reineke T M,Lodge T P.Macromolecules,2016,49:6644-6654
    43 Huang C W,Mohamed M G,Zhu C Y,Kuo S W.Macromolecules,2016,49:5374-5385
    44 Kuo S W,Chen C J.Macromolecules,2011,44:7315-7326
    45 Hsu C H,Kuo S W,Chen J K,Ko F H,Liao C S,Chang F C.Langmuir,2008,24:7727-7734
    46 Osuji C,Chao C Y,Bita I,Ober C K,Thomas E L.Adv Funct Mater,2002,12:753-758
    47 Zhang Y Y,Li Y M,Liu W G.Adv Funct Mater,2015,25:471-480
    48 Zhang X,Lin J Y,Wang L Q,Zhang L S,Lin J P,Gao L.Polymer,2015,78:69-80
    49 Dehghan A,Shi A C.Macromolecules,2013,46:5796-5805
    50 Duan C,Li W H,Qiu F,Shi A C.ACS Macro Lett,2017,6:257-261
    51 Palanisamy A,Guo Q.Chem Commun,2015,51:11100-11103
    52 Yang H,Zhang C,Li C,Liu Y,An Y,Ma R J,Shi L Q.Biomacromolecules,2015,16:1372-1381
    53 Gong Ying(龚颖),Yuan Qian(袁倩),Nie Jing(聂静),Yang Shuguang(杨曙光).Acta Polymerica Sinica(高分子学报),2017,(6):967-973
    54 Cai C H,Li Y L,Lin J P,Wang L Q,Lin S L,Wang X S,Jiang T.Angew Chem Int Ed,2013,52:7732-7736
    55 Zhu X Y,Guan Z,Lin J P,Cai C H.Sci Rep,2016,6:29796
    56 Zhang S,Cai C H,Guan Z,Lin J P,Zhu X Y.Chinese Chem Lett,2017,28:839-844
    57 Kuo S W,Chen C J.Macromolecules,2012,45:2442-2452
    58 Sasaki S,Uzawa T.Polym Bull,1986,6:517-524
    59 Matyjaszewski K,Xia J.Chem Rev,2001,101:2921-2990
    60 Yu Y S,Zhang L F,Eisenberg A.Macromolecules,1998,31:1144-1154
    61 Liu F T,Eisenberg A.J Am Chem Soc,2003,125:15059-15064
    62 Zhang Shuo(张朔),Li Qing(李庆),Lin Jiaping(林嘉平),Cai Chunhua(蔡春华),Wang Liquan(王立权).Acta Polymerica Sinica(高分子学报),2017,(2):294-305
    63 Losik M,Kubowicz S,Smarsly B,Schlaad H.Eur Phys J E,2004,15:407-411
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.