三元聚合物共混体系的微观结构与力学性能模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of Microstructures and Mechanical Properties of Ternary Polymer Blends
  • 作者:郑春键 ; 崔志伟 ; 黄永民
  • 英文作者:ZHENG Chun-jian;CUI Zhi-wei;HUANG Yong-min;Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education,School of Chemistry and Molecular Engineering,East China University of Science and Technology;
  • 关键词:蒙特卡罗模拟 ; 构型 ; 弹簧格子模型 ; 力学性能 ; 断裂
  • 英文关键词:Monte Carlo simulation;;morphology;;lattice spring model;;mechanical property;;fracture
  • 中文刊名:GNGF
  • 英文刊名:Journal of Functional Polymers
  • 机构:华东理工大学化学与分子工程学院特种功能高分子材料及相关技术教育部重点实验室(B);
  • 出版日期:2018-07-12
  • 出版单位:功能高分子学报
  • 年:2018
  • 期:v.31
  • 基金:国家自然科学基金(21476071)
  • 语种:中文;
  • 页:GNGF201804004
  • 页数:10
  • CN:04
  • ISSN:31-1633/O6
  • 分类号:29-38
摘要
建立一种构型模拟与力学性能模拟相结合的连续模拟方法研究了三元共混物(两种均聚物与一种共聚物)中交替共聚结构与嵌段共聚结构对力学性能的影响。通过蒙特卡罗模拟获得其构型,然后将该构型作为弹簧格子模型的数据输入,模拟三元共混体系的微观结构与力学性能。模拟结果表明:交替共聚物在体系中更倾向于在两种均聚物的界面处自我缠绕,而嵌段共聚物的两端分别渗透进与之相容的均聚物体相中;三元共混物的力学性能与其内部的两相界面结构相关;应变在交替共聚物体系中均匀分布,导致更多的断裂发生在体相中,交替共聚物体系比嵌段共聚物体系力学性能更强且更具韧性。这种连续模拟方法为研究材料组成与力学性能之间的关系提供了一种新方案。
        Most homopolymers are incompatible with each other,which limits the mechanical properties of the binary blend.A method to solve this problem is to add a copolymer compatibilizer which is compatible with both initial homopolymers.A continuous simulation method combining Monte Carlo simulation with lattice spring model(LSM)is adopted to study the influence of the architecture of copolymer compatibilizer on the mechanical properties of homopolymer blends.In this work,a Monte Carlo simulation combining cavity diffusion with bond length fluctuation algorithm was adopted to simulate the morphologies and the micro-connections between polymer units,and then the stimulated results directly served as the input of LSM,which is the most important innovation of this work.The mean-square radii of gyration of alternating copolymers and diblock copolymers are 6.59 and 12.15,respectively.Simulated results show that both diblock copolymer and alternating copolymer act as the efficient compatibilizer in the ternary blends.The alternating copolymer chains are inclined to entangle with each other and are distributed on the interfaces of homopolymer microphases,while each block of the diblock copolymer is penetrated into the pure phases.Simulated results also reveal that the different interfacial structures affect the strain and stress distribution of the systems.The strain and stress in the alternating system are higher than those in the diblock system.It is noticeable that the fractures tend to distribute on the spherical surface in the diblock system,while the fractures are more probable to occur in the matrix phase all the time in the alternating system.Both the strength and the toughness of the alternating copolymer compatibilizer system are larger than those of the diblock copolymer compatibilizer system.The continuous simulation method in this work has been proven to be a feasible tool to predict the mechanical properties of materials according to the real composition.
引文
[1]RYAN A J.Polymer science:Designer polymer blends[J].Nature Materials,2002,1(1):8-10.
    [2]张雪,刘媛,杨斌,等.碳纤维表面改性对复合材料性能的影响[J].功能高分子学报,2017,30(4):444-449.
    [3]RABEONY M,SIANO D B,PEIFFER D G,et al.Closed-loop immiscibility in a ternary mixture of homopolymers[J].Polymer,1994,35(5):1033-1037.
    [4]LYATSKAYA Y,BALAZS A C.Using copolymer mixtures to compatibilize immiscible homopolymer blends[J].Macromolecules,1996,29(23):7581-7587.
    [5]DUDOWICZ J,FREED K F,DOUGLAS J F.Modification of the phase stability of polymer blends by diblock copolymer additives[J].Macromolecules,1995,28(7):2276-2287.
    [6]DADMUN M.Effect of copolymer architecture on the interfacial structure and miscibility of a ternary polymer blend containing a copolymer and two homopolymers[J].Macromolecules,1996,29(11):3868-3874.
    [7]LI H,XIE X M.Morphology development and superior mechanical properties of PP/PA6/SEBS ternary blends compatibilized by using a highly efficient multi-phase compatibilizer[J].Polymer,2017,108:1-10.
    [8]赵学哲,邓声威,黄永民,等.高分子共混薄膜的分相结构与力学性能[J].功能高分子学报,2010,23(4):323-328.
    [9]HUANG Y M,LIU H L,HU Y.Monte Carlo simulations of the morphologies and conformations of triblock copolymer thin films[J].Macromolecular Theory&Simulations,2006,15(2):117-127.
    [10]HUANG Y M,LIU H L,HU Y.Morphologies of diblock copolymer/homopolymer blend films[J].Macromolecular Theory&Simulations,2006,15(4):321-330.
    [11]HUANG Y M,HAN X,LIU H L,et al.Monte-Carlo study of triblock copolymer/homopolymer blend films[J].Macromolecular Theory&Simulations,2007,16(1):93-100.
    [12]XIAO X Q,HUANG Y M,FENG J,et al.Microphase separation of a diblock copolymer dispersed in nanorod arrays grafted on a plate:A Monte Carlo study[J].Macromolecular Theory&Simulations,2011,20(2):124-132.
    [13]DENG S W,HUANG Y M,LIAN C,et al.Micromechanical simulation of molecular architecture and orientation effect on deformation and fracture of multiblock copolymers[J].Polymer,2014,55(18):4776-4785.
    [14]DENG S W,ZHAO X Z,HUANG Y M,et al.Deformation and fracture of polystyrene/polypropylene blends:A simulation study[J].Polymer,2011,52(24):5681-5694.
    [15]王立权,林嘉平,张乾.梳状-线性共聚物自组装的耗散粒子动力学模拟[J].化学学报,2013,71(6):913-919.
    [16]SINGH A,PURI S,DASGUPTA C.Kinetics of phase separation in polymer mixtures:A molecular dynamics study[J].Journal of Chemical Physics,2014,140(24):244906.
    [17]SINGH A,PURI S.Phase separation in ternary fluid mixtures:A molecular dynamics study[J].Soft Matter,2015,11(11):2213-2219.
    [18]BUXTON G A,BALAZS A C.Predicting the mechanical properties of binary blends of immiscible polymers[J].Interface Science,2003,11(2):175-186.
    [19]BUXTON G A,BALAZS A C.Micromechanical simulation of the deformation and fracture of polymer blends[J].Macromolecules,2005,38(2):488-500.
    [20]BUXTON G A,BALAZS A C.Modeling the dynamic fracture of polymer blends processed under shear[J].Physical Review B,2004,69(5):054101.
    [21]YAN L T,MARESOV E,BUXTON G A,et al.Self-assembly of mixtures of nanorods in binary,phase-separating blends[J].Soft Matter,2011,7(2):595-607.
    [22]DENG S W,PAYYAPPILLY S S,HUANG Y M,et al.Multiscale simulation of shear-induced mechanical anisotropy of binary polymer blends[J].RSC Advances,2016,6(48):41734-41742.
    [23]ROSENBLUTH M N,ROSENBLUTH A W.Monte Carlo calculation of the average extension of molecular chains[J].Journal of Chemical Physics,1955,23(2):356-359.
    [24]REITER J,EDLING T,PAKULA T.Monte Carlo simulation of lattice models for macromolecules at high densities[J].Journal of Chemical Physics,1990,93(1):837-844.
    [25]陆建明,杨玉良.高浓度多链体系链动力学的Monte Carlo模拟——键长涨落模型和空穴扩散算法[J].中国科学(A辑数学),1991,34(11):1226-1232.
    [26]冯捷,蔡钧,刘洪来,等.嵌段共聚高分子系统微观相变的Monte Carlo模拟[J].华东理工大学学报(自然科学版),2000,26(4):421-424.
    [27]MONETTE L,ANDERSON M P.Elastic and fracture properties of the two-dimensional triangular and square lattices[J].Modelling&Simulation,1994,2(1):53-66.
    [28]BUXTON G A,BALAZS A C.Lattice spring model of filled polymers and nanocomposites[J].Journal of Chemical Physics,2002,117(16):7649-7658.
    [29]CUI Z W,HUANG Y M,LIU H L.Predicting the mechanical properties of brittle porous materials with various porosity and pore sizes[J].Journal of the Mechanical Behavior of Biomedical Materials,2017,71:10-22.
    [30]MALIK R,HALL C K,GENZER J.Effect of copolymer compatibilizer sequence on the dynamics of phase separation of immiscible binary homopolymer blends[J].Soft Matter,2011,7(22):10620-10630.
    [31]KO M J,KIM S H,JO W H.The effects of copolymer architecture on phase separation dynamics of immiscible homopolymer blends in the presence of copolymer:A Monte Carlo simulation[J].Polymer,2000,41(16):6387-6394.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.