纳米棒的类聚合组装行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Polymerization-like Assembly Behavior of the Nanorods
  • 作者:刘晓娜 ; 高梁 ; 王立权 ; 张承岩 ; 林嘉平
  • 英文作者:Xiao-na Liu;Liang Gao;Li-quan Wang;Cheng-yan Zhang;Jia-ping Lin;Shanghai Key Laboratory of Advanced Polymeric Materials,School of Materials Science and Engineering,East China University of Science and Technology;
  • 关键词:自组装 ; 聚合 ; 组装动力学 ; 布朗动力学
  • 英文关键词:Self-assembly;;Polymerization;;Assembly kinetics;;Brownian dynamics
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:华东理工大学材料科学与工程学院上海市先进聚合物材料重点实验室;
  • 出版日期:2018-08-28 09:40
  • 出版单位:高分子学报
  • 年:2018
  • 基金:国家自然科学基金(基金号21774032);; 中央高校基本科研业务费(项目号222201714042)资助项目
  • 语种:中文;
  • 页:GFXB201810003
  • 页数:8
  • CN:10
  • ISSN:11-1857/O6
  • 分类号:30-37
摘要
构建了两端修饰有疏水聚合物的纳米棒模型,利用布朗动力学模拟研究了其组装行为,考察了溶剂选择性、纳米棒长度和纳米棒浓度等因素对组装行为的影响.研究表明,纳米棒可发生类似于高分子聚合的组装行为,在大部分情况下,其动力学符合高分子逐步聚合原理.但是,当纳米棒浓度较高或聚合物溶解性较好时,纳米棒的增长难以用逐步聚合原理来描述.本研究工作阐明了纳米棒的类聚合组装动力学,可为一维多级有序结构的设计和制备提供思路.
        Step-wise self-assembly is a promising strategy to construct assemblies with higher-level hierarchy and complexity. In this self-assembly, the primary assemblies can self-assemble into one-dimensional structures in a way similar to the synthesis of polymers. However, the questions such as whether the principle of polymerization can apply to the one-dimensional growth of the assemblies still need to be clarified. To address this question, Brownian dynamics simulation was used to investigate the self-assembly of the nanorods with two ends capped with hydrophobic polymers such as polystyrenes. In the Brownian dynamics simulation, the amphiphility was simulated by choosing different cutt-off distances of the Lennard-Jones potentials for the nanorods and polymers. It was found that the nanorods associated with each other into chain-like structures via end-to-end connection, due to the hydrophobility of the polymers. The effects of the solvent selectivity, the length of the nanorods, and the concentration of the nanorods on the self-assembly were examined. The self-assembly of the nanorods into chain-like structures resembles the covalent polymerization of the monomers. The kinetics of the polymerization follows the rule of the step-growth polymerization in most of the cases. As the length of the nanorods or the concentration of the nanorods increases, the degrees of the polymerization show a more rapid increase as a function of time. For the effect of the solvent selectivity, the nanorods are found to be "polymerized"more rapidly as the solubility of the polymers decreases. However, as the solubilty of the polymers is low enough,the "polymerization" behavior is remarkedly less influenced by the solvent selectivity. Note that the rule of the step-growth polymerization cannot apply to the one-dimensional self-assembly of the nanorods when the concentration of the nanorods or the solubility of the polymer is higher. In addition, we found that the nanorods can self-assemble into ring-like structures with various numbers of nanorods via designing nanorods with adjustable chamfers at two ends. The observations are well consistent with some available experimental findings regarding the self-assembly of gold nanorods coated with a bilayer of cetyl trimethyl ammonium bromide along its sides and thiol-terminated polystyrene at two ends. The work can help to understand the dynamics of the selfassembly and designing one-dimensional ordered microstructures in future.
引文
1Whitesides G M,Grzybowski B.Science,2002,295(5564):2418-2421
    2Li Q,Wang L,Lin J.Phys Chem Chem Phys,2017,19(35):24135-24145
    3Cai C,Lin J,Lu J,Zhang Q,Wang L.Chem Soc Rev,2016,45(21):5985-6012
    4Wu Qiong(吴琼),Xu Pengxiang(徐鹏翔),Wang Liquan(王立权),Cai Chunhua(蔡春华),Lin Jiaping(林嘉平),Lu Yingqing(陆映晴),Tian Xiaohui(田晓慧).Acta Polymerica Sinica(高分子学报),2017,(3):471-478
    5Xu Jiangfei(徐江飞),Zhang Xi(张希).Acta Polymerica Sinica(高分子学报),2017,(1):37-49
    6Long Meilin(隆美林),Zhang Ke(张科),Chen Yongming(陈永明),Zhu Wen(朱雯).Acta Polymerica Sinica(高分子学报),2016,(9):1238-1246
    7Zhang Shuo(张朔),Li Qing(李庆),Lin Jiaping(林嘉平),Cai Chunhua(蔡春华),Wang Liquan(王立权).Acta Polymerica Sinica(高分子学报),2017,(2):294-305
    8Gr?schel A H,Müller A H E.Nanoscale,2015,7(28):11841-11876
    9Hill L J,Pinna N,Char K,Pyun J.Prog Polym Sci,2015,40:85-120
    10Liu K,Nie Z,Zhao N,Li W,Rubinstein M,Kumacheva E.Science,2010,329(5988):197-200
    11Liu K,Lukach A,Sugikawa K,Chung S,Vickery J,Therien-Aubin H,Yang B,Rubinstein M,Kumacheva E.Angew Chem Int Ed,2014,53(10):2648-2653
    12Li Z,Zhu Y,Lu Z,Sun,Z.Soft Matter,2016,12(3):741-749
    13Zou Q,Li Z,Lu Z,Sun,Z.Nanoscale,2016,8(7):4070-4076
    14Gr?schel A H,Schacher F H,Schmalz H,Borisov O V,Zhulina E B,Walthe,A,Müller A H E.Nat Commun,2012,3:710
    15Gr?schel A H,Walther A,L?bling T I,Schacher F H,Schmalz H,Müller A H E.Nature,2013,503:247-251
    16Wang X,Guerin G,Wang H,Wan Y,Manners I,Winnik M A.Science,2007,317(5838):644-647
    17G?dt T,Ieong N S,Cambridge G,Winnik M A,Manners I.Nat Mater,2009,8:144-150
    18Qiu H,Hudson Z M,Winnik M A,Manners I.Science,2015,347(6228):1329-1332
    19Zhuang Z,Jiang T,Lin J,Gao L,Yang C,Wang L,Cai C.Angew Chem Int Ed,2016,55(40):12522-12527
    20Yang C,Ma X,Lin J,Wang L,Lu Y,Zhang L,Cai C,Gao L.Macromol Rapid Commun,2017,39:1700701
    21Schneider T,Stoll E.Phys Rev B,1978,17:1302-1322
    22Grest G S,Kremer K.Phys Rev A,1986,33(5):3628-3631
    23Li Y,Jiang T,Wang L,Lin S,Lin J.Polymer,2016,103:64-72
    24Zhang Q,Lin J,Wang L,Xu Z.Prog Polym Sci,2017,75:1-30
    25He Manjun(何曼君),Zhang Hongdong(张红东),Chen Weixiao(陈维孝),Dong Xixia(董西侠).Polymer Physics(高分子物理).Shanghai(上海):Fudan Univ Press(复旦大学出版社),2006.5-8
    26Flory P J.Principles of Polymer Chemsitry.Ithaca,NY:Cornell Univ Press,1953.30-145
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.