基于时间硬化理论的聚乳酸结构件尺寸稳定性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dimensional Stability Analysis of Polylactic-acid Structural Parts Based on Time Hardening Theory
  • 作者:马芳武 ; 韩露 ; 陈实现 ; 蒲永锋 ; 沈亮
  • 英文作者:Ma Fangwu;Han Lu;Chen Shixian;Pu Yongfeng;Shen Liang;Jilin University, State Key Laboratory of Automotive Simulation and Control;
  • 关键词:聚乳酸材料 ; 拓扑优化 ; 蠕变 ; 时间硬化理论 ; 有限元分析
  • 英文关键词:polylactic acid;;topology optimization;;creep;;time hardening theory;;finite element analysis
  • 中文刊名:QCGC
  • 英文刊名:Automotive Engineering
  • 机构:吉林大学汽车仿真与控制国家重点实验室;
  • 出版日期:2019-06-25
  • 出版单位:汽车工程
  • 年:2019
  • 期:v.41;No.299
  • 基金:国家重点研发计划(2016YFB0101601);; 吉林省省校共建计划专项(SXGJQY2017-7,SXGJSF2017-2-1-5);; 吉林省产业创新专项(2019C041-2)资助
  • 语种:中文;
  • 页:QCGC201906016
  • 页数:6
  • CN:06
  • ISSN:11-2221/U
  • 分类号:109-114
摘要
基于等刚度理论设计了以聚乳酸为材料的某款电动车蓄电池托盘。通过拓扑优化,在使托盘质量减轻8.5%的同时,托盘的最大应力和最大位移分别减小了26.5%和19.7%。考虑到非金属材料的蠕变特性,以时间硬化理论为基础建立材料蠕变模型,通过有限元分析,得到零件在长期受载情况下的蠕变应变值。结果表明,聚乳酸材料零件满足产品在尺寸稳定性上的设计要求,验证了聚乳酸材料在汽车产品应用中的可行性。
        The battery tray of polylactic acid in an electric vehicle is designed based on equal stiffness theory. Through topology optimization the maximum stress and displacement of battery tray reduce by 26.5% and 19.7% respectively while its mass drops by 8.5%. With consideration of the creep characteristics of nonmetallic materials, the creep model of the material is established based on the theory of time hardening, and a finite element analysis is conducted to get the creep strain of battery tray under long-term loading condition. The results show that polylactic acid parts meet the design requirements of product in terms of dimension stability, verifying the feasibility of the application of polylactic acid to automotive products.
引文
[1] AKAMPUMUZA O,WAMBUA P M,AHMED A,et al.Review of the applications of biocomposites in the automotive industry[J].Polymer Composites,2017,38(11):1-17.
    [2] COUTURE A,LEBRUN G,LAPERRIèRE L.Mechanical properties of polylactic acid (PLA) composites reinforced with unidirectional flax and flax-paper layers[J].Composite Structures,2016,154 :286-295.
    [3] 齐锦刚,曹丽云,王建中,等.碳纤维增强聚乳酸复合材料体外降解特性[J].复合材料学报,2005,22(2):34-37.
    [4] 刘涛,余雪江,余凤湄,等.短碳纤维增强聚乳酸的制备与性能研究[J].化工新型材料,2010,38(9):100-102.
    [5] 龚炫,席建玲,吴宏武.剑麻纤维增强聚乳酸可降解复合材料力学性能[J].塑料,2010,39(3):26-29.
    [6] 韩冰,张声春,张春祥,等.玻璃纤维增强聚乳酸复合材料的增韧改性研究[J].现代塑料加工应用,2013,25(1):27-30.
    [7] NOTTA-CUVIER D,ODENT J,DELILLE R,et al.Tailoring polylactide (PLA) properties for automotive applications:effect of addition of designed additives on main mechanical properties[J].Polymer Testing,2014,36(36):1-9.
    [8] NOTTA-CUVIER D,MURARIU M,ODENT J,et al.Tailoring polylactide properties for automotive applications:effects of co-addition of halloysite nanotubes and selected plasticizer[J].Macromolecular Materials & Engineering,2015,300(7):684-698.
    [9] NASSIOPOULOS E,NJUGUNA J.Thermo-mechanical performance of poly(lactic acid)/flax fibre-reinforced biocomposites[J].Materials & Design,2015,66:473-485.
    [10] 杨翰搏,大木顺司,王苓.PLA/HA复合材料蠕变行为研究[J].西华大学学报:自然科学版,2015(1):22-26.
    [11] BRAUNER C,HERRMANN A S,NIEMEIER P M,et al.Analysis of the non-linear load and temperature-dependent creep behaviour of thermoplastic composite materials[J].Journal of Thermoplastic Composite Materials,2015,43(5):431-478.
    [12] MONFARED V.Circular functions based comprehensive analysis of plastic creep deformations in the fiber reinforced composites[J].Applied Composite Materials,2016,23(6):1-13.
    [13] 单豪琳,马骏.特定环境下螺旋桨尾轴蠕变特性研究[J].中国舰船研究,2006,1(Z1):50-53.
    [14] FINDLEY W N,LAI J S,ONARAN K.Creep and relaxation of nonlinear viscoelastic materials[J].Journal of Applied Mechanics,1976,44(2):505-509.
    [15] 刘鹏飞,赵启林,王景全.树脂基复合材料蠕变性能研究进展[J].玻璃钢/复合材料,2013(3):109-117.
    [16] 郭进全,段非,苗晓鹏,等.基于时间硬化理论的应力松弛简化归一模型[J].机械强度,2012(6):930-933.
    [17] 程域钊,王延荣,李宏新,等.归一化参数蠕变模型的程序实现与验证[J].航空动力学报,2017,32(3):697-703.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.