不同粒径PMMA粉尘云火焰温度特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Flame temperatures of PMMA dust clouds with different particle size distributions
  • 作者:甘波 ; 高伟 ; 张新燕 ; 姜海鹏 ; 毕明树
  • 英文作者:GAN Bo;GAO Wei;ZHANG Xinyan;JIANG Haipeng;BI Mingshu;School of Chemical Machinery and Safety Engineering,Dalian University of Technology;School of Mining and Safety Engineering,Shandong University of Science and Technology;
  • 关键词:PMMA ; 粉尘爆炸 ; 粒径分布 ; 火焰温度
  • 英文关键词:PMMA;;dust explosion;;particle size distribution;;flame temperature
  • 中文刊名:BZCJ
  • 英文刊名:Explosion and Shock Waves
  • 机构:大连理工大学化工机械与安全学院;山东科技大学矿业与安全工程学院;
  • 出版日期:2017-11-29 15:22
  • 出版单位:爆炸与冲击
  • 年:2019
  • 期:v.39;No.183
  • 基金:国家自然科学基金(51406023,51674059);; 中央高校基本科研业务费专项(DUT16QY05)
  • 语种:中文;
  • 页:BZCJ201901017
  • 页数:8
  • CN:01
  • ISSN:51-1148/O3
  • 分类号:140-147
摘要
为揭示粒径分布对聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)粉尘云火焰温度的影响,本文分别采用热电偶和高速比色测温法测量了开敞空间不同粒径PMMA粉尘云的火焰温度特性。结果表明:相比30μm粉尘粒子,100 nm粉尘粒子热解/挥发速率较快,燃烧更加充分,粉尘云火焰的最高温度可达1551℃,而30μm粉尘云火焰最高温度仅为1 108℃;在微米尺度,随着PMMA粉尘粒径的增大,火焰最高温度和高温火焰区面积先增大后减小; 20μm粉尘粒子由于其分散性较好,裂解气化特征时间尺度与燃烧反应特征时间尺度较接近,燃烧反应充分,火焰最高温度和高温火焰区面积均最大。
        In the present study,to find out about the effects of particle size distributions on the flame temperatures of polymethyl methacrylate( PMMA) dust clouds,we measured the flame temperatures of PMMA dust clouds with different particle size distributions using the thermocouple and high-speed colorimetric method. The results show that,due to the faster pyrolysis/volatilization rate of 100 nm dust particle,the temperature was able to reach 1 551 ℃ while the maximum temperature of 30 μm dust cloud was only 1 108 ℃. The maximum flame temperature and high temperature flame area increased and then decreased with the increase of PMMA dust particle size for micron-scale. The pyrolysis/volatilization time scale of 20 μm dust particles was close to the combustion reaction time scale because of their good dispersibility. As a result,the maximum temperature and high temperature flame area were the largest among the particles with different particle size distributions.
引文
[1]蒯念生,黄卫星,袁旌杰,等.点火能量对粉尘爆炸行为的影响[J].爆炸与冲击,2012,32(4):432-438.DOI:10.11883/1001-1455(2012)04-0432-07.KUAI Niansheng,HUANG Weixing,YUAN Jingjie,et al.Influence of ignition energy on dust explosion behavior[J].Explosion and Shock Wave,2012,32(4):432-438.DOI:10.11883/1001-1455(2012)04-0432-07.
    [2]高聪,李化,苏丹,等.密闭空间煤粉的爆炸特性[J].爆炸与冲击,2010,30(2):164-168.GAO Cong,LI Hua,SU Dan,et al.Explosion characteristics of coal dust in a sealed vessel[J].Explosion and Shock Wave,2010,30(2):164-168.DOI:10.11883/1001-1455(2010)02-0164-05.
    [3]张洪铭,陈先锋,张英,等.基于RGB颜色模型的玉米淀粉爆燃火焰传播速度[J].爆炸与冲击,2018,38(1):133-139.ZHANG Hongming,CHEN Xianfeng,ZHANG Ying,et al.Flame propagation velocities of cornstarch dust explosion based on RGB color model[J].Explosion and Shock Wave,2018,38(1):133-139.DOI:10.11883/bzycj-2016-0278.
    [4]DOBASH R,SENDA K.Mechanisms of flame propagation through suspended combustible particles[J].Journal de PhysiqueⅣ,2002,12(7):459-465.DOI:10.1051/jp4:20020316.
    [5]CHEN J L,DOBASH R,HIRANO T.Mechanism of flame propagation through combustible particle clouds[J].Journal of Loss Prevention in the Process Industries,1996,9(3):225-229.DOI:10.1016/0950-4230(96)00001-0.
    [6]GAO W,DOBASH R,MOGI T,et al.Effects of particle characteristics on flame propagation behavior during organic dust explosions in a half-closed chamber[J].Journal of Loss Prevention in the Process Industries,2012,25(6):993-999.DOI:10.1016/j.fuel.2013.05.071.
    [7]GAO W,YU J L,MOGI T,et al.Effects of particle thermal characteristics on flame microstructures during dust explosions of three long-chain monobasic alcohols in a half-closed chamber[J].Journal of Loss Prevention in the Process Industries,2014,32(11):127-134.DOI:10.1016/j.jlp.2014.08.005.
    [8]GAO W,MOGI T,SUN J H,et al.Effects of particle thermal characteristics on flame structures during dust explosions of three long-chain monobasic alcohols in an open-space chamber[J].Fuel,2013,113(11):86-96.DOI:10.1016/j.fuel.2013.05.071.
    [9]GAO W,MOGI T,SUN J H,et al.Effects of particle size distributions on flame propagation mechanism during octadecanol dust explosions[J].Powder Technology,2013,249(11):168-174.DOI:10.1016/j.powtec.2013.08.007.
    [10]GAO W,MOGI T,YU J L,et al.Flame propagation mechanisms in dust explosions[J].Journal of Loss Prevention in the Process Industries,2015,36(7):186-194.DOI:10.1016/j.jlp.2014.12.021.
    [11]高伟,圆井道也,荣建忠,等.粒径分布对有机粉尘爆炸中火焰结构的影响[J].燃烧科学与技术,2013,19(2):157-162.GAO Wei,MARUI Michiya,RONG Jianzhong,et al.Effect of particle size distribution on flame structure in organic dust explosion[J].2013,19(2):157-162.
    [12]曹卫国,徐森,梁济元,等.煤粉尘爆炸过程中火焰的传播特性[J].爆炸与冲击,2014,34(5):586-593.CAO Weiguo,XU Sen,LIANG Jiyuan,et al.Characteristics of flame propagation during coal dust cloud explosion[J].Explosion and Shock Wave,2014,34(5):586-593.DOI:10.11883/1001-1455(2014)05-0586-08.
    [13]WINGERDEN K V,STAVSENG L.Measurements of the laminar burning velocities in dust-air mixtures[J].VDI-Berichte,1996(1272):553-564.
    [14]孙金华.PMMA微粒子云中传播火焰的基本结构[J].热科学与技术,2004,3(1):76-80.SUN Jinhua.The basic structure of propagating flame in PMMA micro-particle clouds[J].Journal of Thermal Science and Technology,2004,3(1):76-80.
    [15]ZHANG X Y,YU J L,GAO W,et al.Flame propagation behaviors of nano-and micro-scale PMMA dust explosions[J].Journal of Loss Prevention in the Process Industries,2016,40(3):101-111.DOI:10.1016/j.jlp.2015.12.010.
    [16]ZHANG X Y,YU J L,GAO W,et al.Effects of particle size distributions on PMMA dust flame propagation behaviors[J].Powder Technology,2017,317(7):197-208.DOI:10.1016/j.powtec.2017.05.001.
    [17]BALLANTYNE A,MOSS J B.Fine wire thermocouple measurements of fluctuating temperature[J].Combustion Science and Technology,1977,17(1/2):63-72.DOI:10.1080/00102209708946813.
    [18]杨世铭.传热学[M].北京:北京高等教育出版社,1987:331-333.
    [19]姜滦生,孙皆宜,刘爽.基于CCD比色原理的熟料温度场测量[J].仪器仪表学报,2006(增刊1):52-54.JIANG Luansheng,SUN Jieyi,LIU Shuang.Measurement of clinker temperature field based on CCD colorimetric theory[J].Chinese Journal of Scientific Instrument,2006(Suppl 1):52-54.
    [20]GAO W,MOGI T,RONG J Z,et al.Motion behaviors of the unburned particles ahead of flame front in hexadecanol dust explosion[J].Powder Technology,2015,271(2):125-133.DOI:10.1016/j.powtec.2014.11.003.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.