可用于高效光催化制氢的Ni-P团簇改性氮化碳材料(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ni-P cluster modified carbon nitride toward efficient photocatalytic hydrogen production
  • 作者:王雅婕 ; 李瑶 ; 曹少文 ; 余家国
  • 英文作者:Yajie Wang;Yao Li;Shaowen Cao;Jiaguo Yu;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology;
  • 关键词:光催化 ; 制氢 ; 助催化剂 ; Ni-P合金 ; 电荷转移
  • 英文关键词:Photocatalysis;;Hydrogen production;;Cocatalyst;;Ni-P alloy;;Charge transfer
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:武汉理工大学材料复合新技术国家重点实验室;
  • 出版日期:2019-05-07
  • 出版单位:催化学报
  • 年:2019
  • 期:v.40
  • 基金:supported by the National Natural Science Foundation of China(21773179,U1705251 and 21433007);; the Natural Science Foundation of Hubei Province of China(2017CFA031);; the Excellent Dissertation Cultivation Funds of Wuhan University of Technology(2016-YS-001)~~
  • 语种:英文;
  • 页:CHUA201906010
  • 页数:8
  • CN:06
  • ISSN:21-1601/O6
  • 分类号:92-99
摘要
在过去的几十年里,化石能源的过度消耗导致了全球能源短缺和环境污染,这严重制约着人类社会发展.因此,寻找一种清洁的可再生的能源成为了人们亟待解决的问题.太阳能是地球上最丰富的能源,通过半导体光催化技术把太阳能转化为清洁的氢能是解决能源危机和缓解环境污染最有效的方法之一.石墨相氮化碳(CN)具有合适的能带结构、良好的稳定性、无毒性,且合成方法简单、成本低廉,因而被视为是一种非常有潜力的半导体光催化剂.然而,由于CN在光催化反应过程中光生电子与空穴极易发生复合,严重影响了电子从体相到外表面的转移过程以及随后的光催化质子还原反应,使得CN光催化制氢效率不高.通过负载助催化剂可以有效地促进光生电子和空穴的分离.但是现有的高效助催化剂一般为贵金属,如Pt, Pd和Au等,成本较高,不利于实际应用.因此,寻找高效、稳定且廉价的助催化剂成为光催化领域的挑战之一.本文通过化学镀的方法将Ni-P合金团簇锚定在CN表面,并通过X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱(UV-visDRS)、X射线光电子能谱(XPS)、稳态荧光光谱(PL)、时间分辨荧光光谱(TRPL)、光电化学测试和光催化制氢测试等方法研究了负载Ni-P助催化剂对CN晶体结构、化学组成、微观形貌、吸光能力、电荷转移以及光催化性能的影响.XRD, FTIR, FESEM和TEM的结果显示, Ni-P均匀紧密地与CN结合在一起.UV-visDRS测试表明,负载Ni-P提高了材料体系的光吸收能力.XPS结果表明,在复合光催化剂中电子从CN转移到了Ni-P助催化剂上,表明光催化剂和助催化剂之间强的界面相互作用.PL, TRPL和光电化学测试结果表明,与普通CN相比,负载了Ni-P的CN有更小的荧光强度、更短的荧光寿命和更小的电荷转移电阻.这说明负载Ni-P助催化剂提高了CN的电荷转移效率,抑制了光生电子和空穴的复合.因此在光催化制氢反应中,复合光催化剂的氢气产率可高达1506μmolh~(-1) g~(-1),可以与负载贵金属Pt助催化剂的CN相媲美,并且在9 h的循环试验中,产氢性能没有明显下降.综上所述, Ni-P合金团簇在光催化质子还原反应中有望作为贵金属助催化剂的高效、稳定且廉价的替代品.
        Exploring low-cost cocatalyst to take over noble metal cocatalyst is still challenging in the field of photocatalytic proton reduction. Herein, Ni-P alloy clusters are anchored onto the surface of polymeric carbon nitride through a chemical plating method and serve as highly efficient and stable cocatalyst toward photocatalytic proton reduction. An effective role in promoting the charge separation and migration of the photocatalytic system is demonstrated for Ni-P clusters, which essentially enhance the photocatalytic H_2-production rate to a value of 1506 μmol h~(–1) g~(–1). This performance is comparable to that of the benchmark of Pt-modified carbon nitride. This work highlights that the Ni-P alloy could be a potential alternative to noble metal cocatalyst in the photocatalytic reactions.
引文
[1]J.Qi,W.Zhang,R.Cao,Adv.Energy Mater.,2018,8,1701620.
    [2]J.Yan,P.Verma,Y.Kuwahara,K.Mori,H.Yamashita,Small Methods,2018,2,1800212.
    [3]W.Zhang,W.Gao,X.Zhang,Z.Li,G.Lu,Appl.Surf.Sci.,2018,434,643-668.
    [4]X.Zheng,Y.Yang,S.Chen,L.Zhang,Chin.J.Catal.,2018,39,379-389.
    [5]Q.Xu,L.Zhang,J.Yu,S.Wageh,A.A.Al-Ghamdi,M.Jaroniec,Mater.Today,2018,21,1042-1063.
    [6]J.K.Stolarczyk,S.Bhattacharyya,L.Polavarapu,J.Feldmann,ACSCatal.,2018,8,3602-3635.
    [7]J.Y.Xu,X.Tong,P.Yu,G.E.Wenya,T.McGrath,M.J.Fong,J.Wu,Z.M.Wang,Adv.Sci,2018,5,1800221.
    [8]S.Cao,J.Yu,J.Photochem.Photobio.C,2016,27,72-99.
    [9]J.Xiong,J.Di,J.Xia,W.Zhu,H.Li,Adv.Funct.Mater.,2018,28,1801983.
    [10]K.Qi,B.Cheng,J.Yu,W.Ho,Chin.J.Catal.,2017,38,1936-1955.
    [11]W.J.Ong,L.L.Tan,Y.H.Ng,S.T.Yong,S.P.Chai,Chem.Rev.,2016,116,7159-7329.
    [12]X.Wang,G.Zhang,Z.A.Lan,Angew.Chem.Int.Ed.,2016,55,15712-15727.
    [13]M.Z.Rahman,C.B.Mullins,K.Davey,Adv.Sci.,2018,5,1800820.
    [14]B.Zhu,L.Zhang,B.Cheng,J.Yu,Appl.Catal.B,2018,224,983-999.
    [15]A.Savateev,S.Pronkin,J.D.Epping,M.G.Willinger,C.Wolff,D.Neher,M.Antonietti,D.Dontsova,Chem Cat Chem,2017,9,167-174.
    [16]H.Ou,L.Lin,Y.Zheng,P.Yang,Y.Fang,X.Wang,Adv.Mater.,2017,29,1700008.
    [17]G.Zhang,G.Li,Z.A.Lan,L.Lin,A.Savateev,T.Heil,S.Zafeiratos,X.Wang,M.Antonietti,Angew.Chem.Int.Ed.,2017,56,13445-13449.
    [18]S.Guo,Z.Deng,M.Li,B.Jiang,C.Tian,Q.Pan,H.Fu,Angew.Chem.Int.Ed.,2016,55,1830-1834.
    [19]S.Cao,Q.Huang,B.Zhu,J.Yu,J.Power Sources,2017,351,151-159.
    [20]Y.Wang,S.Zhao,Y.Zhang,J.Fang,Y.Zhou,S.Yuan,C.Zhang,W.Chen,Appl.Surf.Sci.,2018,440,258-265.
    [21]J.Jiang,S.Cao,C.Hu,C.Chen,Chin.J.Catal.,2017,38,1981-1989.
    [22]C.Yang,W.Teng,Y.Song,Y.Cui,Chin.J.Catal.,2018,39,1615-1624.
    [23]Z.Dong,Y.Wu,N.Thirugnanam,G.Li,Appl.Surf.Sci.,2018,430,293-300.
    [24]J.Fu,Q.Xu,J.Low,C.Jiang,J.Yu,Appl.Catal.B,2019,243,556-565.
    [25]C.Yin,L.Cui,T.Pu,X.Fang,H.Shi,S.Kang,X.Zhang,Appl.Surf.Sci.,2018,456,464-472.
    [26]J.Fu,J.Yu,C.Jiang,B.Cheng,Adv.Energy Mater.,2018,8,1701503.
    [27]Z.Qin,W.Fang,J.Liu,Z.Wei,Z.Jiang,W.Shangguan,Chin.J.Catal.,2018,39,472-478.
    [28]I.F.Teixeira,E.C.M.Barbosa,S.C.E.Tsang,P.H.C.Camargo,Chem.Soc.Rev.,2018,47,7783-7817.
    [29]S.Cao,J.Low,J.Yu,M.Jaroniec,Adv.Mater.,2015,27,2150-2176.
    [30]X.Jin,L.Zhang,X.Fan,J.Tian,M.Wang,J.Shi,Appl.Catal.B,2018,237,888-894.
    [31]S.Cao,J.Jiang,B.Zhu,J.Yu,Phys.Chem.Chem.Phys.,2016,18,19457-19463.
    [32]J.Kosco,I.McCulloch,ACS Energy Lett.,2018,3,2846-2850.
    [33]S.Cao,H.Li,T.Tong,H.C.Chen,A.Yu,J.Yu,H.M.Chen,Adv.Funct.Mater.,2018,28,1802169.
    [34]J.Bai,B.Lu,Q.Han,Q.Li,L.Qu,ACS Appl.Mater.Interfaces,2018,10,38066-38072.
    [35]S.Cao,B.Shen,Q.Huang,Z.Chen,Appl.Surf.Sci.,2018,442,361-367.
    [36]X.Han,D.Xu,L.An,C.Hou,Y.Li,Q.Zhang,H.Wang,Appl.Catal.B,2019,243,136-144.
    [37]Z.Qin,Y.Chen,Z.Huang,J.Su,L.Guo,J.Mater.Chem.A,2017,5,19025-19035.
    [38]K.He,J.Xie,X.Luo,J.Wen,S.Ma,X.Li,Y.Fang,X.Zhang,Chin.J.Catal.,2017,38,240-252.
    [39]N.Li,J.Zhou,Z.Sheng,W.Xiao,Appl.Surf.Sci.,2018,430,218-224.
    [40]R.Shen,J.Xie,X.Lu,X.Chen,X.Li,ACS Sustain.Chem.Eng.,2018,6,4026-4036
    [41]J.Sun,L.Duan,Q.Wu,W.Yao,Chem.Eng.J.,2018,332,449-455.
    [42]R.Shen,J.Xie,H.Zhang,A.Zhang,X.Chen,X.Li,ACS Sustain.Chem.Eng.,2018,6,816-826.
    [43]Q.Zhao,J.Sun,S.Li,C.Huang,W.Yao,W.Chen,T.Zeng,Q.Wu,Q.Xu,ACS Catal.,2018,8,11863-11874.
    [44]R.Shen,J.Xie,Y.Ding,S.Y.Liu,A.Adamski,X.Chen,X.Li,ACS Sustain.Chem.Eng.,2019,7,3243-3250.
    [45]J.Zhang,W.Yao,C.Huang,P.Shi,Q.Xu,J.Mater.Chem.A,2017,5,12513-12519.
    [46]X.C.Wang,K.Maeda,A.Thomas,K.Takanabe,G.Xin,J.M.Carlsson,K.Domen,M.Antonietti,Nat.Mater.,2009,8,76-80.
    [47]Y.Kang,Y.Yang,L.C.Yin,X.Kang,G.Liu,H.M.Cheng,Adv.Mater.,2015,27,4572-4577.
    [48]J.Wen,J.Xie,H.Zhang,A.Zhang,Y.Liu,X.Chen,X.Li,ACS Appl.Mater.Interfaces,2017,9,14031-14042.
    [49]Q.Han,B.Wang,Y.Zhao,C.Hu,L.Qu,Angew.Chem.Int.Ed.,2015,54,11433-11437.
    [50]H.Ou,P.Yang,L.Lin,M.Anpo,X.Wang,Angew.Chem.Int.Ed.,2017,56,10905-10910.
    [51]B.Zhu,P.Xia,W.Ho,J.Yu,Appl.Surf.Sci.,2015,344,188-195.
    [52]W.Wan,S.Yu,F.Dong,Q.Zhang,Y.Zhou,J.Mater.Chem.A,2016,4,7823-7829.
    [53]Y.Kang,Y.Yang,L.C.Yin,X.Kang,L.Wang,G.Liu,H.M.Cheng,Adv.Mater.,2016,28,6471-6477.
    [54]W.Zhao,Y.Guo,S.Wang,H.He,C.Sun,S.Yang,Appl.Catal.B,2015,165,335-343.
    [55]J.Xiao,Y.Xie,F.Nawaz,Y.Wang,P.Du,H.Cao,Appl.Catal.B,2016,183,417-425.
    [56]Q.Xu,C.Jiang,B.Cheng,J.Yu,Dalton trans.,2017,46,10611-10619.
    [57]H.Zhao,S.Sun,P.Jiang,Z.J.Xu,Chem.Eng.J.,2017,315,296-303.
    [58]J.F.Moulder,W.F.Stickle,P.E.Sobol,K.D.Bomben,Handbook of X-Ray Photoelectron Spectroscopy,Perkin-Elmer Corporation,Eden Prairie,MN,USA 1992,85.
    [59]J.F.Moulder,W.F.Stickle,P.E.Sobol,K.D.Bomben,Handbook of X-Ray Photoelectron Spectroscopy,Perkin-Elmer Corporation,Eden Prairie,MN,USA 1992,59.
    [60]M.Green,Z.Liu,R.Smedley,H.Nawaz,X.Li,F.Huang,X.Chen,Mater.Today Phys.,2018,5,78-86.
    [61]M.Green,L.Tian,P.Xiang,J.Murowchick,X.Tan,X.Chen,Mater.Today Nano,2018,1,1-7.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.