吸力面不同吹风比切向冷气喷射对跨声速涡轮叶栅气动性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Tangential Coolant Ejection on Suction Side with Different Blowing Ratio on Aerodynamic Performance of a Transonic Turbine Cascade
  • 作者:王宇峰 ; 蔡乐 ; 刘勋 ; 周逊 ; 王仲奇
  • 英文作者:WANG Yu-feng;CAI Le;LIU Xun;ZHOU Xun;WANG Zhong-qi;Engine Aerodynamics Research Centre,Harbin Institute of Technology;Harbin Marine Boiler and Turbine Research Institute;
  • 关键词:跨声速涡轮 ; 气膜冷却 ; 切向冷气喷射 ; 能量损失
  • 英文关键词:Transonic turbine;;Film cooling;;Tangential coolant ejection;;Energy loss
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:哈尔滨工业大学发动机气体动力研究中心;哈尔滨船舶锅炉涡轮机研究所;
  • 出版日期:2018-11-07 09:43
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.263
  • 基金:国家自然科学基金青年基金(51706051)
  • 语种:中文;
  • 页:TJJS201905006
  • 页数:9
  • CN:05
  • ISSN:11-1813/V
  • 分类号:42-50
摘要
为进一步探究跨声速涡轮中吸力面切向冷气喷射对叶栅气动性能及气膜冷却效果的影响,以跨声速涡轮叶栅作为研究对象,采用数值模拟方法,通过在叶片吸力面不同位置开设切向冷气喷射槽,进行不同吹风比下的冷气喷射,对跨声速气冷涡轮叶栅的总体性能以及流场细节进行了详细研究。研究结果表明,吸力面切向冷气喷射有利于减小跨声速涡轮叶栅激波损失,叶栅最大马赫数可减小0.104;切向冷气喷射槽位于尾缘内伸激波反射点上游,且吹风比处于0.75~1.00内时,叶栅能量损失最小;吹风比的增大有利于减小甚至消除冷气槽内分离泡,并能够减小唇部激波强度。
        In order to further clarify the effects of tangential coolant ejection on suction side on aerodynamic performance and film cooling effectiveness in a transonic turbine,numerical simulations were conducted on a transonic turbine cascade. Coolant slots were located at different positions on the suction side of blade and coolant was ejected at different blowing ratios to study the effects of tangential coolant slot on overall performance and detail of flow field of a transonic turbine cascade. The results showed that the tangential coolant ejection on suction side is good for minimizing the shock wave loss. The max Mach number can be reduced by more than 0.104. The energy loss coefficient has its minimum value when the coolant slot is placed upstream of the reflecting point of inner-extending shock wave and blowing ratio is between 0.75 to 1.00. The increasement of blowing ratio is beneficial to decrease the size of separation bubble inside the cooling slot,or even eliminate it. At the same time,the increasing blowing ratio is also good for decreasing the intensity of shock wave at the lip of cooling slot.
引文
[1] Lin C X,Holder R,Thornburg H,et al. Numerical Simulation of Film Cooling in Reactive Flow over a Surface with Shaped Coolant Hole[R]. AIAA 2009-678.
    [2] Gritsch M,Schulz A,Wittig S. Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes with Expanded Exits[R]. ASME 97-GT-164.
    [3] Gritsch M,Colban W,Sch?īr H,et al. Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes[J]. Journal of Turbomachinery,2005,127(4):718-725.
    [4]朱惠人,许都纯.锥形排孔气膜冷却实验研究[J].推进技术,1998,19(3):65-69.(ZHU Hui-ren,XU Du-chun. Film Cooling Experimental Investigation of a Row of Cone-Shaped Holes[J]. Journal of Propulsion Technology,1998,19(3):65-69.)
    [5]朱惠人,许都纯.簸箕形排孔气膜冷却实验研究[J].航空学报,1997,18(5):535-538.
    [6] Brachmanski R E,Niehuis R,Bosco A. Investigation of a Separated Boundary Layer and Its Influence on Secondary Flow of a Transonic Turbine Profile[R]. ASME GT2014-25890.
    [7] Ochs M,Schulz A,Bauer H J. Investigation of the Influence of Trailing Edge Shock Waves on Film Cooling Performance of Gas Turbine Airfoils[R]. ASME GT2007-27482.
    [8] Saha R,Fridh J,Fransson T,et al. Suction and Pressure Side Film Cooling Influence on Vane Aero Performance in a Transonic Annular Cascade[R]. ASME GT2013-94319.
    [9] Liu J,Qiao W Y,Huang P,et al. Numerical and Experimental Investigation of Micro-Jet on the Suction Side of a Supersonic Turbine Cascade[R]. ASME GT2014-26524.
    [10]王凯,王松涛,王仲奇.冷气喷射法控制激波强度的数值研究[J].航空动力学报,2010,25(6):1374-1380.
    [11]费微微,单勇,王敏敏,等.超声速涡轮叶栅超声速气膜冷却数值研究[J].推进技术,2016,37(5):916-921.(FEI Wei-wei,SHAN Yong,WANG Minmin,et al. Numerical Study of Supersonic Film Cooling in Supersonic Turbine Cascade[J]. Journal of Propulsion Technology,2016,37(5):916-921.)
    [12]吴宏,杨登文.新型台阶缝冷却结构的气动及冷却特性[J].北京航空航天大学学报,2018,44(2).
    [13]朱惠人,原和朋,周志强,等.几何结构对后台阶缝隙气膜冷却效率的影响[J].推进技术,2006,27(4):312-315.(ZHU Hui-ren,YANG He-peng,ZHOU Zhi-qiang,et al. Effect of Geometry of Back-Step Slots on Film Cooling[J]. Journal of Propulsion Technology,2006,27(4):312-315.)
    [14]原和朋,朱惠人,孔满昭.后台阶三维缝隙冷却效率的数值模拟[J].燃气轮机技术,2006,19(4):38-42.
    [15]朱惠人,原和朋,周志强,等.气动参数对后台阶三维缝隙气膜冷却效率的影响[J].航空动力学报,2006,21(2):315-319.
    [16] Benabed M,Azzi A,Jubran B A. Numerical Investigation of the Influence of Incidence Angle on Asymmetrical Turbine Blade Model Showerhead Film Cooling Effectiveness[J]. Heat and Mass Transfer,2010,46(8-9):811-819.
    [17] Chi Z,Ren J,Jiang H. Coupled Aerothermodynamics Optimization for the Cooling System of a Turbine Vane[J]. Journal of Turbomachinery,2014,136(5).
    [18]罗磊,王松涛,迟重然,等.传热设计流程在涡轴涡轮冷却中的应用[J].推进技术,2013,34(11):1520-1529.(LUO Lei,WANG Song-tao,CHI Zhongran,et al. Application of Heat Transfer Design Process for Turbine in Turbo Shaft Engine[J]. Journal of Propulsion Technology,2013,34(11):1520-1529.)
    [19]卢少鹏,迟重然,罗磊,等.气热耦合条件下涡轮静叶三维优化[J].推进技术,2014,35(3):356-364.(LU Shao-peng,CHI Zhong-ran,LUO Lei,et al. Conjugate Heat Transfer 3-D Optimization for Turbine Stator[J]. Journal of Propulsion Technology,2014,35(3):356-364.)
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.