超短脉冲激光微孔加工(上)——理论研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ultrashort pulse laser drilling of micro-holes(part 1)——theoretical study
  • 作者:赵万芹 ; 梅雪松 ; 王文君
  • 英文作者:Zhao Wanqin;Mei Xuesong;Wang Wenjun;School of Materials Engineering, Shanghai University of Engineering Science;Shanghai Collaborative Innovation Center of Laser Advanced Manufacturing Technology;State Key Laboratory for Manufacturing Systems Engineering, Xi′an Jiaotong University;
  • 关键词:超短脉冲激光 ; 微孔加工 ; 机制 ; 物理特性
  • 英文关键词:ultrashort pulse laser;;micro-hole drilling;;mechanical;;physical property
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:上海工程技术大学材料工程学院;上海市激光先进制造技术协同创新中心;西安交通大学机械制造系统国家重点实验室;
  • 出版日期:2018-10-11 10:28
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.291
  • 基金:国家重点研发计划(2017YFB1104602);; 长江学者和创新团队发展计划(IRT_15R54)
  • 语种:中文;
  • 页:HWYJ201901022
  • 页数:9
  • CN:01
  • ISSN:12-1261/TN
  • 分类号:140-148
摘要
自20世纪60年代激光器被发明以来,其脉冲宽度被不断压缩至亚皮秒及飞秒量级,使得激光加工技术进入到了超短脉冲阶段。为了进一步优化超短脉冲激光的微加工,理论研究必不可少。主要论述了超短脉冲激光与不同类型材料之间的相互作用机制。简述了超短脉冲激光微孔加工中的典型物理特性,如等离子体效应、自聚焦和光丝效应及锥形辐射等。分析了超短脉冲激光微孔加工的理论研究现状,并得出了目前理论研究中存在的问题。
        Since the invention of lasers in the 1960 s, the pulse duration has being continuously shorten down to the sub-picosecond and even femtosecond regime. It makes the laser processing technology to the ultrashort pulse laser era. In order to further optimize the ultrashort pulse laser micro-machining,theoretical study is indispensable. The interaction mechanism between ultrashort pulse laser and different types of materials were presented. The typical physical properties, such as plasma effect, self-focusing and filamentation, and conical radiation, were discussed. The theoretical studies for ultrashort pulse laser drilling of micro-hole were analyzed. Furthermore, the challenging issues were obtained.
引文
[1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature,1969, 187(4736):134-136.
    [2] Siegal Y, Glezer E N, L Huang A, et al. Laser-induced phase transitions in semiconductors[J]. Annual Review of Materials Research, 1995, 25(1):223-247.
    [3] Wang Xiaodong. Ablation and micromachining of metals with short and ultra-short laser pulses[D]. Wuhan:Huazhong University of Science and Technology, 2009.(in Chinese)
    [4] Lu Shiji. A course on solid physics[M]. Beijing:Peking University Press, 1990.(in Chinese)
    [5] Chichkov B N, Momma C, Nolte S, et al. Femtosecond,picosecond and nanosecond laser ablation of solids[J].Applied Physics A Materials Science&Processing, 1996,63(2):109-115.
    [6] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 2002, 1(4):217.
    [7] Linde D V D, Sokolowski-Tinten K, Bialkowski J. Lasersolid interaction in the femtosecond time regime[J]. Applied Surface Science, 1997, s109-110:1-10.
    [8] Buerle D. Laser Processing and Chemistry[M]. Berlin:Springer, 2000:291-292.
    [9] Shah J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures[M]. Berlin:Springer, 1999.
    [10] Hüttner B, Rohr G. On the theory of ps and sub-ps laser pulse interaction with metals I. Surface temperature[J].Applied Surface Science, 1996, 103(3):269-274.
    [11] Downer M C, Shank C V. Ultrafast heating of silicon on sapphire by femtosecond optical pulses[J]. Physical Review Letters, 1986, 56(56):761-764.
    [12] Kaiser A, Rethfeld B, Vicanek M, et al. Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses[J]. Physical Review B, 2000, 61(17):11437-11450.
    [13] Jiang L, Tsai H L. Prediction of crater shape in femtosecond laser ablation of dielectrics[J]. Journal of Physics D Applied Physics, 2004, 37(10):1492.
    [14] Sugioka K, Cheng Y. Ultrafast Laser Processing:from Microto Nanoscale[M]. Singapore:Pan Stanford Pub, 2013.
    [15] Küper S, Stuke M. Ablation of polytetrafluoroethylene(Teflon)with femtosecond UV excimer laser pulses[J].Applied Physics Letters, 1989, 54(1):4-6.
    [16] Li Yi. Heat accumulation in high repetition rate femtosecond laser micromachining and its applications[D]. Tianjin:Tianjin University, 2012.(in Chinese)
    [17] Fan C H, Sun J, Longtin J P. Plasma Absorption of Femtosecond Laser Pulses in Dielectrics[J]. Journal of Heat Transfer, 2002, 124(2):275-283.
    [18] Zhang Wentao. Research on the interaction between femtosecond and the silicon nitride crystal film[D]. Xi′an:Northwest University, 2009.(in Chinese)
    [19] Stuart B C, Feit M D, Herman S, et al. Nanosecond-tofemtosecond laser-induced breakdown in dielectrics[J].Physical Review B Condensed Matter, 1996, 53(4):1749.
    [20] Jiang L, Tsai H L. Plasma modeling for ultrashort pulse laser ablation of dielectrics[J]. Journal of Applied Physics, 2006,100(2):729.
    [21] Russo R E, Mao X L, Liu H C, et al. Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation[J]. Applied Physics A, 1999, 69(1):S887-S894.
    [22] Mao S S, Mao X, Greif R, et al. Initiation of an early-stage plasma during picosecond laser ablation of solids[J]. Applied Physics Letters, 2000, 77(16):2464-2466.
    [23] Dausinger F, Lubatschowski H, Lichtner F. Femtosecond Technology for Technical and Medical Applications[M]. Topics in Applied Physics, 96. Berlin, Heidelberg:Springer, 2004.
    [24] Breitling D, Dausinger F. Fundamental aspects in machining of metals with short and ultrashort laser pulses[C]//SPIE,2004, 5339:49-63.
    [25] Kasparian J, Sauerbrey R, Chin S L. The critical laser intensity of self-guided light filaments in air[J]. Applied Physics B, 2000, 71(6):877-879.
    [26] Stafe M, Marcu A, Puscas N N. Pulsed Laser Ablation of Solids[M]. Berlin:Springer, 2014:758-770.
    [27] Marburger J H, Dawes E. Dynamical formation of a smallscale filament[J]. Physical Review Letters, 1968, 21(8):556-558.
    [28] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 2007, 441(2-4):47-189.
    [29] Braun A, Korn G, Liu X, et al. Self-channeling of highpeak-power femtosecond laser pulses in air[J]. Optics Letters, 1995, 20(1):73-75.
    [30] Schaaf P. Laser Processing of Materials:Fundamentals,Applications and Developments[M]. Berlin:Springer, 2010:15-21.
    [31] Courvoisier F, Boutou V, Kasparian J, et al. Ultraintense light filaments transmitted through clouds[J]. Applied Physics Letters, 2003, 83(2):213-215.
    [32] Monot P, Auguste T, Gibbon P, et al. Experimental demonstration of relativistic self-channeling of a multiterawatt laser pulse in an underdense plasma[J].Physical Review Letters, 1995, 74(15):2953.
    [33] Pukhov A. Strong field interaction of laser radiation[J].Reports on Progress in Physics, 2003, 65(1):1-55.
    [34] Breitling D, Ruf A, Berger P W, et al. Plasma effects during ablation and drilling using pulsed solid-state lasers[C]//SPIE,2003, 5121:24-33.
    [35] Golub I. Optical characteristics of supercontinuum generation[J]. Optics Letters, 1990, 15(6):305.
    [36] Nibbering E T, Curley P F, Grillon G, et al. Conical emission from self-guided femtosecond pulses in air[J].Optics Letters, 1996, 21(1):62.
    [37] Sun J, Longtin J P. Effects of a gas medium on ultrafast laser beam delivery and materials processing[J]. Journal of the Optical Society of America B, 2004, 21(5):1081-1088.
    [38] Kaganov M I, Lifshits I M, Tanatarov L V. Relaxation between electrons and crystalline lattice[J]. Sov Phys JETP,1957, 4(31):173.
    [39] Anisimov S I, Kapeliovich B L, Perelman T L. Electron emission from metal surfaces exposed to ultrashort laser pulses[J]. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki,1974, 66(776):776-781.
    [40] Qiu T Q, Tien C L. Heat transfer mechanisms during shortpulse laser heating of metals[J]. Journal of Heat Transfer,1993, 115:4(4):835-841.
    [41] Xu Xiaofang. Study on transient reflectivity phenomenon on the surfaceas of metal films induced by femtosecond laser[D]. Zhenjiang:Jiangsu University, 2013.(in Chinese)
    [42] Anisimov S I, Rethfeld B. Theory of ultrashort laser pulse interaction with a metal[C]//SPIE, 1997, 3093:192-203.
    [43] Kotake S, Kuroki M. Molecular dynamics study of solid melting and vaporization by laser irradiation[J]. International Journal of Heat&Mass Transfer, 1993, 36(8):2061-2067.
    [44] Jiang L, Tsai H L. Improved two-temperature model and its application in ultrashort laser heating of metal films[J].Journal of Heat Transfer, 2005, 127(10):1167.
    [45] Bévillon E, Colombier J P, Recoules V, et al. First-principles calculations of heat capacities of ultrafast laser-excited electrons in metals[J]. Applied Surface Science, 2015, 336:79-84.
    [46] Bevillon E, Colombier J P, Dutta B, et al. Ab initio nonequilibrium thermodynamic and transport properties of ultrafast laser irradiated 316L stainless steel[J]. Journal of Physical Chemistry C, 2015, 119:11438-11446.
    [47] Nedialkov N N, Atanasov P A. Molecular dynamics simulation study of deep hole drilling in iron by ultrashort laser pulses[J]. Applied Surface Science, 2006, 252(13):4411-4415.
    [48] Urbassek H M, Rosandi Y. Insight from molecular dynamics simulation into ultrashort-pulse laser ablation[C]//SPIE,2010, 7842(1):104-104.
    [49] Wang Xinlin. Femtosecond laser ablation of metallic materials and fabrication of micro-components[D]. Wuhan:Huazhong University of Science and Technology, 2007.(in Chinese)
    [50] Rouleau C M, Shih C Y, Wu C, et al. Nanoparticle generation and transport resulting from femtosecond laser ablation of ultrathin metal films:Time-resolved measurements and molecular dynamics simulations[J].Applied Physics Letters, 2014, 104(19):312-124.
    [51] Wu C, Zhigilei L V. Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations[J]. Applied Physics A, 2014,114(1):11-32.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.