非线性发展方程的无网格比高精度有限元方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:UNCONDITIONAL HIGH ACCURACY FINITE ELEMENT METHODS FOR NONLINEAR EVOLUTION EQUATIONS
  • 作者:石东洋 ; 王俊俊
  • 英文作者:SHI Dong-yang;WANG Jun-jun;School of Mathematics and Statistics, Zhengzhou University;School of Mathematics and Statistics, Pingdingshan University;
  • 关键词:非线性发展方程 ; 线性化的全离散格式 ; 无网格比 ; 超逼近及超收敛性
  • 英文关键词:nonlinear evolution equations;;linearized full discrete schemes;;unconditional;;superclose and superconvergent properties
  • 中文刊名:SXZZ
  • 英文刊名:Journal of Mathematics
  • 机构:郑州大学数学与统计学院;平顶山学院数学与统计学院;
  • 出版日期:2019-01-15
  • 出版单位:数学杂志
  • 年:2019
  • 期:v.39;No.182
  • 基金:国家自然科学基金(11671369; 11271340)
  • 语种:中文;
  • 页:SXZZ201901001
  • 页数:19
  • CN:01
  • ISSN:42-1163/O1
  • 分类号:4-22
摘要
对于几类非线性的发展型方程——非线性抛物方程、非线性Schr?dinger方程、非线性Sobolev方程、非线性双曲方程,本文从协调有限元方法、非协调有限元方法、混合有限元方法等不同角度,利用不同技巧深入系统地研究了其线性化的全离散格式的构造、无网格比约束下的超逼近和超收敛分析.
        Some nonlinear evolution equations, such as nonlinear parabolic equations,nonlinear Schr?dinger equations, nonlinear Sobolev equations and nonlinear hyperbolic equations are studied deeply from different points of view and different techniques by conforming finite element method, nonconforming finite element method and mixed finite element method. Based on the research about the construction of linearized full discrete schemes, the unconditional superclose and superconvergent results are obtained.
引文
[1] Li B Y, Sun W W. Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations[J]. Int. J. Numer. Anal. Model., 2013, 10(3):622–633.
    [2] Li B Y, Sun W W. Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media[J]. SIAM J. Numer. Anal., 2013, 51(4):1959–1977.
    [3] Wang J L, Si Z Y, Sun W W. A new error analysis of characteristics-mixed FEMs for miscible displacement in porous media[J]. SIAM J. Numer. Anal., 2013, 52(6):3000–3020.
    [4] Gao H D. Optimal error analysis of Galerkin FEMs for nonlinear Joule heating equations[J]. J. Sci.Comput., 2014, 58(3):627–647.
    [5] Li B Y, Gao H D, Sun, W W. Unconditionally optimal error estiamtes of a Crank-Nicolson Galerkin method for the nonlinear thermistor equations[J]. SIAM J. Numer. Anal., 2014, 52(2):933–954.
    [6] Gao H D. Unconditional optimal error estiamtes of BDF-Galerkin FEMs for nonlinear thermistor equations[J]. J. Sci. Comput., 2016, 66(2):504–527.
    [7] Cai W T, Li J, Chen Z X. Unconditional convergence and optimal error estimates of the Euler semiimplicit scheme for a generalized nonlinear Schr¨odinger equation[J]. Adv. Comput. Math, 2016, 42:1311–1330.
    [8] Wang J L. A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schr¨odinger equation[J]. J. Sci. Comput., 2014, 60(2):390–407.
    [9] Si Z Y, Wang J L, Sun W W. Unconditional stability and error estimates of modified characteristics FEMs for the Navier-Stokes equations[J]. Numer. Math., 2016, 134(1):139–161.
    [10]陈绍春,陈红如.二阶椭圆问题新的混合元格式[J].计算数学, 2010, 32(2):213–218.
    [11]史峰,于佳平,李开泰.椭圆型方程的一种新型混合有限元格式[J].工程数学学报, 2011, 28(2):231–237.
    [12]石东洋,李明浩.二阶椭圆问题一种新格式的高精度分析[J].应用数学学报, 2014, 37(1):45–58.
    [13]石东洋,王芬玲,樊明智,赵艳敏. Sine-Gordon方程的最低阶各向异性混合元高精度分析新途径[J].计算数学, 2015, 37(2):148–161.
    [14] Pani A K. An H1-Galerkin mixed finite element methods for parabolic partial differential equatios[J].SIAM J. Numer. Anal., 1998, 35(2):712–727.
    [15] Guo L, Chen H Z. H1-Galerkin mixed finite element method for the regularized long wave equation[J]. Computing, 2006, 77(2):205–221.
    [16] Pani A K, Sinha R K, Otta A K. An H1-Galerkin mixed method for second order hyperbolic equations[J]. Int. J. Numer. Anal. Model., 2004, 1(2):111–129.
    [17] Pani A K, Fairweather G. An H1-Galerkin mixed finite element method for an evolution equation with a positive-type memory term[J]. SIAM J. Numer. Anal., 2003, 40(4):1475–1490.
    [18] Pani A K. H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations[J]. IMA J. Numer. Anal., 2002, 22:231–252.
    [19] Shi D Y, Liao X, Tang Q L. Highly efficient H1-Galerkin mixed finite element method(MFEM)for parabolic integro-differential equation[J]. Appl. Math. Mech., 2014, 35(7), 897–912.
    [20] Che H T, Zhou Z J, Jiang Z W, Wang Y J. H1-Galerkin expanded mixed finite element methods for nonlinear pseudo-parabolic integro-differential equations[J]. Numer. Methods Partial Diff. Equ.,2013, 29(3):799–817.
    [21] Zhang Y D, Shi D Y. Superconvergence of an H1-Galerkin nonconforming mixed finite element method for a parabolic equation[J]. Comput. Math. Appl., 2013, 66(11):2362–2375.
    [22] Shi D Y, Yang H J, Unconditional optimal error estimates of a two-grid method for semilinear parabolic equation[J]. Appl. Math. Comput., 2017, 310:40–47.
    [23] Shi D Y, Wang J J. Unconditional superconvergence analysis of a Crank-Nicolson Galerkin FEM for nonlinear Schr¨odinger equation[J]. J. Sci. Comput., 2017, 72(3):1093–1118.
    [24] Shi D Y, Wang J J, Yan F N. Unconditional superconvergence analysis for nonlinear parabolic equation with EQrot1nonconforming finite element[J]. J. Sci. Comp., 2017, 70(1):85–111.
    [25] Shi D Y, Wang J J. Unconditional superconvergence analysis of conforming finite element for nonlinear parabolic equation[J]. Appl. Math. Comput., 2017, 294:216–226.
    [26] Shi D Y, Wang J J. Unconditional superconvergence analysis for nonlinear hyperbolic equation with nonconforming finite element[J]. Appl. Math. Comput., 2017, 305:1–16.
    [27] Shi D Y, Wang J J. Superconvergence analysis of an H1-Galerkin mixed finite element method for Sobolev equations[J]. Comput. Math. Appl., 2016, 72(6):1590–1602.
    [28] Shi D Y, Wang J J. Unconditional superconvergence analysis of a linearized Galerkin FEM for nonlinear hyperbolic equations[J]. Comput. Math. Appl., 2017, 74(4):634–651.
    [29] Shi D Y, Wang J J, Yan F N. Unconditional superconvergence analysis of an H1-Galerkin mixed finite element method for nonlinear Sobolev equations[J]. Numer. Meth. Part. Diff. Equ., 2018,34(1):145–166.
    [30] Shi D Y, Wang J J, Yan F N. Superconvergence analysis for nonlinear parabolic equation with EQrot1nonconforming finite element[J]. Comput. Appl. Math., 2018, 37(1):307–327.
    [31] Shi D Y, Wang J J. Unconditional superconvergence analysis of a linearized Galerkin FEM for nonlinear Schrodinger equation[J]. Math. Meth. Appl. Sci., 2018, DOI:10.1002/mma.5126.
    [32] Shi D Y, Wang J J. Unconditional superconvergence analysis of an H1-Galerkin mixed finite element method for two-dimensional Ginzburg-Landau equation[J]. J. Comput. Math., 2018, DOI:10.4208/jcm.1802-m2017-0198.
    [33] Shi D Y, Yan F N, Wang J J. Unconditionally superclose analysis of a new mixed finite element method for nonlinear parabolic equation[J]. J. Comput. Math., 2019, 37(1):1–17.
    [34] Shi D Y, Yan F N, Wang J J. Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation[J]. Appl. Math. Comput., 2016, 274(C):182–194.
    [35] Thom′ee V. Galerkin finite element methods for parabolic problems[M]. Sweden:Springer Series in Computational Mathematics, 2000.
    [36] Rachford H H, Jr. Two-level discrete-time Galerkin approximations for second order nonlinear parabolic partial differential equations[J]. SIAM J. Numer. Anal., 1973, 10(6):1010–1026.
    [37] Luskin M. A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions[J]. SIAM J. Numer. Anal., 1979, 16(2):284–299.
    [38] Shi D Y, Tang Q L, Gong W. A low order characteristic-nonconforming finite element method for nonlinear Sobolev equation with convection-dominated term[J]. Math. Comput. Simulat., 2015, 114:25–36.
    [39] Lin Q, Tobiska L, Zhou A H. Superconvergence and extrapolation of nonconformimg low order finite elements applied to the poisson equation[J]. IMA J. Numer. Anal., 2005, 25(1):160–181.
    [40] Shi D Y, Mao S P, Chen S C. An anisotropic nonconforming finite element with some superconvergence results[J]. J. Comput. Math., 2005, 23(3):261–274.
    [41]林群,严宁宁.高效有限元构造与分析[M].石家庄:河北大学出版杜, 1996.
    [42] Rannacher R, Turek S. Simple nonconfirming quadrilateral Stokes element[J]. Numer. Methods Partial Diff. Equ., 1992, 8(2):97–111.
    [43] Hu J, Man H Y, Shi Z C. Constrained nonconforming rotated Q1element for Stokes flow and planar elasticity[J]. Math. Numer. Sin., 2005, 27(3):311–324.
    [44] Park C J, Sheen D W. P1-nonconforming quadrilateral finite element method for second order elliptic problem[J]. SIAM J. Numer. Anal., 2003, 41(2):624–640.
    [45] Shi D Y, Liao X, Wang L L. Superconvergence analysis of conforming finite element method for nonlinear Schr¨odinger equation[J]. Appl. Math. Comput., 2016, 289:298–310.
    [46] Ewing R E. Time-stepping Galerkin methods for nonlinear Sobolev partial-differential equations[J].SIAM J. Numer. Anal., 1978, 15(6):1125–1150.
    [47] Zhang H Y, Liang D. Mixed finite element method for Sobolev equations and its alternating-direction iterative scheme[J]. Numer. Math. J. Chin. Univ.(Engl. Ser.), 1999, 8(2):133–150.
    [48] Chen Y P, Huang Y Q. The full-discrete mixed finite element methods for nonlinear hyperbolic equations[J]. Commun. Nonlinear Sci. Numer. Simul., 1998, 3(3):152–155.
    [49] Lai X, Yuan Y R. Galerkin alternating-direction method for a kind of three-dimensional nonlinear hyperbolic problems[J]. Comput. Math. Appl., 2009, 57(3):384–403.
    [50] Chen S C, Zheng Y J, Mao S P. Anisotropie error bounds of Lagrange interpolation with any order in two and three dimensions[J].Appl.Math.Comput., 2011, 217(22):9313–9321.
    [51] Chen S C, Xiao L C.Interpolation theory of anisotropic finite elements and applications[J]. Sci.China Math., 2008, 51(8):1361–1375.
    [52] Chen S C, Shi D Y, Zhao Y C.Anisotropic interpolations and quasi-Wilson element for narrow quadrilateral meshes[J].IMA J.Numcr.Anal., 2004, 24:77–95.
    [53] Chen S C, Zhao Y C, Shi D Y. Non-C0nonconforming dements for elliptic fourth order singular perpurbation problem[J].J.Comput.Math., 2005, 23(2):185–198.
    [54] Xu J C. A novel two-grid method for semi-linear elliptic equations[J]. SIAM J. Sci. Comput., 1994,15(1):231–237.
    [55] Marion M, Xu J C. Error estimates on a new nonlinear Galerkin method based on two-grid finite elements[J]. SIAM J. Numer. Anal., 1995, 32(4):1170–1184.
    [56] He Y N, Huang P Z, Feng X L. H2-stability of the first order fully discrete schemes for the timedependent Navier-Stokes equations[J]. J. Sci. Comput., 2015, 62(1):230–264.
    [57] Shi D Y, Ren J C. Nonconforming mixed finite element approximation to the stationary NavierStokes equations on anisotropic meshes[J]. Nonl. Anal., 2009, 71(9):3842–3852.
    [58] Zheng K L, Wang C. Long time stability of high order multistep numerical schemes for twodimensional incompressible Navier-Stokes equations[J]. SIAM J. Numer. Anal., 2016, 54(5):3123–3144.
    [59]陈红如,陈绍春.四阶椭圆问题的非协调元[J].计算数学, 2013, 35(1):21–30.
    [60] Chen S C, Li Y, Mao S P. An anisotropic, superconvergent nonconforming plate finite element[J].J.Comput. Appl. Math., 2008, 220(1-2):96–110.
    [61] He S, Li H, Liu Y. Analysis of mixed finite element methods for fourth-order wave equations[J].Comput. Math. Appl., 2013, 65(1):1–16.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.