含水层下短壁块段式采煤导水裂隙带高度发育规律研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the height of fractured water-conducting zone under aquifer for short wall blocking mining
  • 作者:张云 ; 曹胜根 ; 郭帅 ; 万通 ; 王纪军
  • 英文作者:ZHANG Yun;CAO Shenggen;GUO Shuai;WAN Tong;WANG Jijun;State Key Laboratory of Coal Resources and Safe Mining,China University of Mining & Technology;State Key Laboratory for Geomechanics & Deep Underground Engineering,China University of Mining & Technology;
  • 关键词:短壁块段式开采 ; 导水裂隙带高度 ; 主控因素 ; 预测模型
  • 英文关键词:short wall block mining;;height of fractured water-conducting zone;;main controlling factors;;predictive model
  • 中文刊名:KSYL
  • 英文刊名:Journal of Mining & Safety Engineering
  • 机构:中国矿业大学煤炭资源与安全开采国家重点实验室;中国矿业大学深部岩土力学与地下工程国家重点实验室;
  • 出版日期:2018-01-15
  • 出版单位:采矿与安全工程学报
  • 年:2018
  • 期:v.35;No.136
  • 基金:国家重点基础研究发展计划(973)项目(2015CB251600);; 国家科学自然基金项目(51374197)
  • 语种:中文;
  • 页:KSYL201801017
  • 页数:6
  • CN:01
  • ISSN:32-1760/TD
  • 分类号:110-115
摘要
针对大规模粗放型开采所产生的煤柱和不规则块段等滞留煤炭资源的回收问题,提出采用短壁块段式采煤技术对其进行回收,并对块段式采煤上覆岩层导水裂隙带高度发育规律进行了研究。基于块段式工作面的特殊性,确定影响块段式采煤过程中导水裂隙带高度发育的主控因素分别为采高、块段间保护煤柱、块段长度和埋深。采用UDEC模拟软件对块段式采煤过程中不同影响因素下的导水裂隙带发育规律进行分析。结果表明:导水高度随采高和埋深的增加呈线性增加,随块段长度的增加呈对数函数增加,而随块段间保护煤柱宽度的增加呈线性递减状态。依据各因素与导水裂隙带高度关系,通过MATLAB对导水高度进行非线性回归分析,建立了块段式采煤导水高度预测模型,得到预测导水高度为52.9 m;现场实测导水高度为47.98~50.06 m。
        In order to effectively recover the residual coal resources including the coal pillars and irregular coal blocks caused by large-scale extensive mining, the short wall block mining(SBM) mining technique is put forward in this study. And the development pattern of fractured water-conducting zone in the overlying strata during the SBM is investigated. Based on the particularity of SBM working face, the main controlling factors affecting the fractured water-conducting zone are identified as follows: mining height, width of the protective coal pillar among the blocks, block length and mining depth. The development behavior of fractured water-conducting zone under various factors are analyzed by adopting the UDEC software. Results show that the height of fractured water-conducting zone(HFWZ) rises linearly with the increase in the mining height and mining depth. Meanwhile, the HFWZ increases logarithmically with the increasing block length. In contrast, it decreases linearly with the increase in the width of coal pillars.Finally, a predictive model of HFWZ in SBM is developed through a nonlinear regression analysis using the MATLAB. This model predicts a HWFC of 52.9 m in the experimental area, which is very close to the field-measurement results ranging from 47.98 m to 50.06 m.
引文
[1]范钢伟.浅埋煤层开采与脆弱生态保护相互相应机理与工程实践[D].徐州:中国矿业大学,2011.
    [2]JU Jinfeng,XU Jialin.Surface stepped subsidence related to top-coal caving longwall mining of extremely thick coal seam under shallow cover[J].International Journal of Rock Mechanics&Mining Sciences,2015,78:27-35.
    [3]黄庆享,张文忠.浅埋煤层条带充填保水开采岩层控制[M].北京:科技出版社,2014:1-10.
    [4]范立民.论保水采煤问题[J].煤田地质与勘探,2005,33(5):50-53.FAN Limin.Discussing on coal mining under water-containing condition[J].Coal Geology&Exploration,2005,33(5):50-53.
    [5]ZHANG Dongsheng,FAN Gangwei,MA Liqiang,et al.Aquifer protection during longwall mining of shallow coal seams:a case study in the Shendong coalfield of China[J].International Journal of Coal Geology,2011,86(2):190-196.
    [6]缪协兴,王安,孙亚军,等.干旱半干旱矿区水资源保护性采煤基础与应用研究[J].岩石力学与工程学报,2009,28(2):217-227.MIAO Xiexing,WANG An,SUN Yajun,et al.Research on basic theory of mining with water resources protection and its application to arid and semi-arid mining areas[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(2):217-227.
    [7]王双明,黄庆享,范立民,等.生态脆弱矿区含(隔)水层特征及保水开采分区研究[J].煤炭学报,2010,35(1):7-14.WANG Shuangming,HUANG Qingxiang,FAN Limin,et al.Study on overburden aquclude and water protection mining regionazation in the ecological fragile mining area[J].Journal of China Coal Society,2010,35(1):7-14.
    [8]ZHANG Jincai,SHEN Baohong.Coal mining under aquifers in China:a case study[J].International Journal of Rock Mechanics&Mining Sciences,2004,41(4):629-639.
    [9]范立民,马雄德,冀瑞君.西部生态脆弱矿区保水采煤研究与实践进展[J].煤炭学报,2015,40(8):1711-1717.FAN Limin,MA Xiongde,JI Ruijun.Progress in engineering practice of water-preserved coal mining in western eco-environment frangible area[J].Journal of China Coal Society,2015,40(8):1711-1717.
    [10]周茂普.连续采煤机块段式开采工艺与围岩控制技术研究[D].徐州:中国矿业大学,2014.
    [11]周茂普,曹胜根,江小军.连续采煤机块段式开采矿压显现规律研究[J].采矿与安全工程学报,2014,31(3):413-417.ZHOU Maopu,CAO Shenggen,JIANG Xiaojun.The law of rock pressure in the stope with blocking mining by the continuous miner[J].Journal of Mining&Safety Engineering,2014,31(3):413-417.
    [12]周茂普,曹胜根,江小军.缓倾斜煤层连续采煤机短壁开采工艺研究与应用[J].采矿与安全工程学报,2014,31(1):55-59.ZHOU Maopu,CAO Shenggen,JIANG Xiaojun.Research on the application of continuous miner shortwall mining technology in gently inclined longwall face[J].Journal of Mining&Safety Engineering,2014,31(1):55-59.
    [13]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010:41-45.
    [14]PALCHIK V.Influence of physical characteristics of weak rock mass on height of caved zone over abandoned subsurface coal mines[J].Environmental Geology,2003,44(11):92-101.
    [15]HOEK E,BROWN E T.Underground excavations in rocks[M].London:Institution of Mining and Metallurgy,1980:382-395.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.