海水电磁屏蔽体
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seawater Electromagnetic Shield
  • 作者:王身云 ; 计想建 ; 岑大维
  • 英文作者:WANG Shen-yun;JI Xiang-jian;CHEN Da-wei;Research Center of Applied Electromagnetics, Nanjing University of Information Science and Technology;
  • 关键词:海水 ; Debye模型 ; 电导率 ; 电磁屏蔽材料 ; 屏蔽效能 ; 传输系数
  • 英文关键词:seawater;;Debye model;;conductivity;;electromagnetic shielding materials;;shielding effectiveness;;transmission coefficient
  • 中文刊名:JSCX
  • 英文刊名:Equipment Environmental Engineering
  • 机构:南京信息工程大学应用电磁研究中心;
  • 出版日期:2019-05-25
  • 出版单位:装备环境工程
  • 年:2019
  • 期:v.16
  • 基金:国家自然科学基金青年基金(61302048);; 江苏省自然科学基金(BK20151528)
  • 语种:中文;
  • 页:JSCX201905003
  • 页数:4
  • CN:05
  • ISSN:50-1170/X
  • 分类号:14-17
摘要
目的将海水作为一种电磁屏蔽材料,研究其电磁屏蔽效能以及影响因素。方法基于海水和玻璃的电磁特性参数,并利用电场和磁场切向分量连续边界条件,推导由双层玻璃封装海水所构成的复合电磁屏蔽体结构的屏蔽效能计算公式。结果具有一定厚度和盐度的海水墙体可以展示出良好的电磁屏蔽效能。通过增加海水层的厚度,提高海水的盐度以及温度,均可以有效增强海水电磁屏蔽体的屏蔽效能。改变封装海水的玻璃层厚度,对海水电磁屏蔽体的屏蔽效能影响较小。结论海水可以作为一种有效的电磁屏蔽材料,并具有光波透明、电磁屏蔽效能易重构、可循环导热等独特的优势。在军事和民用领域,海水电磁屏蔽体将具有重要的理论和应用价值。
        Objective To investigate the shielding effectiveness of the seawater and its affecting factors where seawater is used as electromagnetic shielding material. Methods Formulas for calculating the shielding effectiveness of composite electromagnetic shielding structure made up of a seawater layer sandwiched by double glazing glass were derived with electromagnetic property parameters of sea water and glass and electromagnetic boundary condition that tangential fields be continuous. Results The seawater electromagnetic shielding wall with enough salinity and thickness had good shielding effectiveness. The shielding effectiveness could be enhanced by increasing the thickness, salty and temperature of the seawater layer, while it was not sensitive to the glass thickness. Conclusion Seawater can be used as effective electromagnetic shielding material. It has advantages of optical transparency, shielding effectiveness reconfiguration, cycle control of heat conduction. It has theoretical and application value in military and civilian areas.
引文
[1]何金良.电磁兼容概论[M].北京:科学出版社,2010.
    [2]聂秀丽,赵晓凡.车辆强电磁脉冲条件下的分层防护及验证方法探讨[J].装备环境工程,2017,14(4):36-41.
    [3]吕立波.信息设备电磁辐射与信息安全[J].网络与通信安全,2007,67(4):67-68.
    [4]郑强,杨日杰.电磁波在海水中的传播特性研究[J].电声技术,2013,37(2):33-35.
    [5]焦瑜呈.海水中电磁波特性的分析与研究[J].舰船电子工程,2018,38(8):176-179.
    [6]刘琳,张东.电磁屏蔽材料的研究进展[J].功能材料,2016,46(3):3016-3022.
    [7]李新,陆萍,汪立海.导电聚合物在电磁屏蔽材料中的应用进展[J].广东化工,2018,45(6):133-134.
    [8]奚江琳,黄茜茜.现代建筑空间电磁污染及防护设计[J].四川建筑,2014,34(1):38-39.
    [9]杨晓东,李洪春,刘清宝,等.新型高导电高温硫化硅橡胶研制[J].火箭推进,2016,42(2):64-68.
    [10]成伟,王妍,王赟,等.自适应智能电磁防护材料测试方法研究[J].装备环境工程,2017,14(4):32-35.
    [11]张晓东,胡裕龙,卜世超,等.船体钢海水腐蚀研究进展[J].装备环境工程,2017,15(6):33-40.
    [12]张彭辉,王炜,郭为民,等.海工钢在热带海域长尺试验腐蚀行为研究[J].装备环境工程,2017,14(2):77-80.
    [13]KLEIN L,SWIFT C.An Improved Model for the Dielectric Constant of Sea Water at Microwave Frequencies[J]IEEE Transactions on Antennas&Propagation,2003,25(1):104-111.
    [14]欧金凤,沈卓身.低介电常数封接玻璃的研制[J].半导体技术,2010,35(6):560-563.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.