大肠杆菌-类中性粒细胞-金属片共培养模型的构建
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Establishment of Escherichia coli-neutrophils-metals co-culture model
  • 作者:杨闯 ; 朱崇尊 ; 何人可 ; 郭阁永 ; 汤瑾 ; 沈灏
  • 英文作者:Yang Chuang;Zhu Chongzun;He Renke;Guo Geyong;Tang Jin;Shen Hao;Department of Orthopaedic Surgery,Shanghai Jiao Tong University Affiliated Sixth People's Hospital;Department of Clinical Laboratory,Shanghai Jiao Tong University Affiliated Sixth People's Hospital;
  • 关键词:假体相关感染 ; 大肠杆菌 ; 荧光 ; 中性粒细胞
  • 英文关键词:Prosthesis-related infections;;Escherichia coli;;Fluorescence;;Neutrophils
  • 中文刊名:ZHGJ
  • 英文刊名:Chinese Journal of Joint Surgery(Electronic Edition)
  • 机构:上海交通大学附属第六人民医院骨科;上海交通大学附属第六人民医院检验科;
  • 出版日期:2019-02-01
  • 出版单位:中华关节外科杂志(电子版)
  • 年:2019
  • 期:v.13
  • 基金:国家自然科学基金(81772364; 81472108)
  • 语种:中文;
  • 页:ZHGJ201901013
  • 页数:9
  • CN:01
  • ISSN:11-9283/R
  • 分类号:69-77
摘要
目的建立稳定发光的类中性粒细胞-大肠杆菌-金属片双荧光三相共培养动态模型,并研究其可行性和应用价值。方法抽提pUC57-mCherry质粒,电转入大肠杆菌临床株ST131,构建稳定发光的ST131-mCherry大肠杆菌。通过活体成像(IVIS)系统对构建的ST131-mCherry大肠杆菌进行筛选。通过稀释涂板法比较ST131-mCherry与ST131的生长曲线,通过结晶紫染色比较ST131-mCherry与ST131的生物膜形成能力。将ST131-mCherry与钛片共培养,荧光显像观察不同时间点成膜情况,并通过超声震荡稀释涂板法对钛片表面生物膜计量。采用全反式维甲酸(ARTA)诱导HL60-eGFP细胞分化为类中性粒细胞。使用诱导分化的HL60-eGFP细胞、ST131-mCherry与金属片共培养,构建双荧光三相共培养模型,通过荧光显微镜观察以及稀释涂板计数评价不同金属表面的类中性白细胞抗菌能力。使用独立样本t检验对OD值和活菌数等定量数据进行统计。结果经临床株筛选,质粒电转获得红色荧光菌株"ST131-mCherry",在体外连续培养48 h,ST131-mCherry可稳定发光。ST131-mCherry与野生株ST131相比,两者的生长曲线没有统计学差异。在胰蛋白胨大豆肉汤培养基(TSB)中,ST131与ST131-mCherry生物膜结晶紫染色490nm的OD值分别为(1. 04±0. 06)和(1. 04±0. 05)(t=0. 890,P> 0. 05);在0. 5%葡萄糖胰蛋白胨大豆肉汤培养基(TSBG)中,分别为(1. 55±0. 06)和(1. 49±0. 17)(t=0. 822,P> 0. 05);在10%滑液(SF)中,分别为(2. 13±0. 16)和(2. 124±0. 13)(t=0. 833,P>0. 05)。ST131-mCherry可以在钛片表面成膜,其荧光强度随着成膜量的增加而变强。诱导分化的HL60-eGFP细胞、ST131-mCherry与钛片或钽片共培养结果显示,经过60 min的共培养,钽金属体系内的HL60-eGFP细胞能够吞噬更多的ST131-mCherry大肠杆菌,钛片体系和钽片体系内细菌存活率分别为(33±2. 5)%和(15. 7±1. 2)%(t=10. 47,P <0. 01)。结论本研究成功构建了大肠杆菌-类中性粒细胞-金属片双荧光三相动态共培养模型,该模型是1种实用的PJI相关抗菌材料体外研究方法。
        Objective To establish a stable fluorescent neutrophil-Escherichia coli( E. coli)-metals binary fluorescence dynamic model,and to evaluate the practicability and application value of this model.Methods p UC57-mCherry plasmid was isolated and transferred to clinical E. coli isolates( ST131) through electroporation,ST131-mCherry was then constructed. ST131-mCherry was screened using in-vivo imaging( IVIS) system. Dilution plate method was utilized to compare the growth curve of ST131-mCherry and ST131,crystal violet staining was used to compare the biofilms in 96-well plates. After the co-culture of ST131-mCherry with titanium,the biofilms at different time points were visualized by fluorescence microscope and quantified by ultrasonic concussion and dilution plate method. All-trans-retinoid acid( ARTA) was used to induce HL60-enhanced green fhcorescent protein( e GFP) to differentiate into neutrophil like cells.Induced differentiated HL60-eGFP,ST131-mCherry and metals were co-cultured to establish the binary fluorescence triple components dynamic model. The antibacterial efficiencies of neutrophil like cells on different metal-surfaces were compared through fluorescent observation and bacterial count. Independent t test was used to evaluate the statistical significance. Results Red fluorescence clinical E. coli( ST131-mCherry)was constructed through clinical strains screening and plasmid electroporation. The fluorescence of ST131-m Cherry was proved to be stable in the 48 h consecutive culture. There was no significant difference of growth curve between ST131-mCherry and ST131 wild strain. OD value of biofilms stained with crystal violet in tryptic soy broth( TSB) at 490 nm was( 1. 04 ± 0. 06) and( 1. 04 ± 0. 05)( t = 0. 890,P > 0. 05) for ST131 and ST131-mCherry respectively,it was( 1. 55 ± 0. 06) and( 1. 49 ± 0. 17)( t = 0. 822,P > 0. 05) in 0. 5%glucose tryptic soy broth( TSBG),( 2. 13 ± 0. 16) and( 2. 124 ± 0. 13)( t = 0. 833,P > 0. 05) in 10%synovial fluid( SF). ST131-mCherry can form biofilms on the surface of titanium,the fluorescent intensity of bacteria was enhanced with the growth of biofilm. The co-culture of differentiated HL60-eGFP,ST131-m Cherry and titanium/tantalum revealed that neutrophils could devour more E. coli in the tantalum system after60 min,bacterial survival rate was( 33 ± 2. 5) % and( 15. 7 ± 1. 2) % for Ti and Ta system respectively( t =10. 47,P < 0. 01). Conclusion E. coli-fluorescent neutrophil-metals binary fluorescence dynamic model is constructed in current study,which is a practical tool to investigate antimicrobial biomaterials in vitro.
引文
[1] Mcpherson EJ,Woodson C,Holtom P,et al. Periprosthetic total hip infection-outcomes using a staging system[J]. Clin Orthop Relat Res,2002,(403):8-15.
    [2] Fink B,Grossmann A,Fuerst M,et al. Two-stage cementless revision of infected hip endoprostheses[J]. Clin Orthop Relat Res,2009,467(7):1848-1858.
    [3] Darouiche RO. Treatment of infections associated with surgical implants[J]. N Engl J Med,2004,350(14):1422-1429.
    [4]王津,王俏杰,沈灏,等.采用可活动性间隔物治疗髋关节假体周围感染的转归[J/CD].中华关节外科杂志(电子版),2017,11(4):417-420.
    [5] Stewart PS,William Costerton J. Antibiotic resistance of bacteria in biofilms[J]. Lancet,2001,358(9276):135-138.
    [6]曹力,纪保超.髋膝关节置换术后假体周围感染焦点问题[J/CD].中华关节外科杂志(电子版),2016,10(4):360-363.
    [7]顾昕,吴海山,赵辉,等.人工关节置换术后假体周围感染的生物膜研究进展[J/CD].中华关节外科杂志(电子版),2012,6(6):940-945.
    [8] Zimmerli W,Lew PD,Waldvogel FA. Pathogenesis of foreign body infection. Evidence for a local granulocyte defect[J]. J Clin Invest,1984,73(4):1191-1200.
    [9] Zimmerli W,Trampuz A,Ochsner PE. Prosthetic-joint infections[J]. N Engl J Med,2004,351(16):1645-1654.
    [10] Zmistowski B,Fedorka CJ,Sheehan E,et al. Prosthetic joint infection caused by gram-negative organisms[J]. J Arthroplasty,2011,26(6 Suppl):104-108.
    [11] Wimmer MD,Friedrich MJ,Randau TM,et al. Polymicrobial infections reduce the cure rate in prosthetic joint infections:outcome analysis with two-stage exchange and follow-up>=two years[J]. Int Orthop,2016,40(7):1367-1373.
    [12] Qin H,Cao HL,Zhao YC,et al. In vitro and in vivo anti-biofilm effects of Silver nanoparticles immobilized on Titanium[J].Biomaterials,2014,35(33):9114-9125.
    [13] Baumstummler A,Chollet R,Meder H,et al. Development of a nondestructive fluorescence-based enzymatic staining of microcolonies for enumerating bacterial contamination in filterable products[J]. J Appl Microbiol,2011,110(1):69-79.
    [14] Guo G,Zhou H,Wang Q,et al. Nano-layered Magnesium fluoride reservoirs on biomaterial surfaces strengthen polymorphonuclear leukocyte resistance to bacterial pathogens[J].Nanoscale,2017,9(2):875-892.
    [15] Wang JX,Li JH,Guo GY,et al. Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus:new insight into the antimicrobial action of Silver[J/OL]. Sci Rep,2016,6:32699.doi:10. 1038/srep32699.
    [16] Wang JX,Zhou HJ,Guo GY,et al. Enhanced anti-infective efficacy of Zn O nanoreservoirs through a combination of intrinsic anti-biofilm activity and reinforced innate defense[J]. ACS Appl Mater Interfaces,2017,9(39):33609-33623.
    [17] Schildhauer TA,Peter E,Muhr G,et al. Activation of human leukocytes on Tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials[J]. J Biomed Mater Res A,2009,88(2):332-341.
    [18] Sahni G, Gopinath P, Jeevanandam P. A novel thermal decomposition approach to synthesize hydroxyapatite-silver nanocomposites and their antibacterial action against GFPexpressing antibiotic resistant E. coli[J]. Colloids Surf B Biointerfaces,2013,103:441-447.
    [19] Kawaja MD,Smithson LJ,Elliott J,et al. Nerve growth factor promoter activity revealed in mice expressing enhanced green fluorescent protein[J]. J Comp Neurol,2011,519(13):2522-2545.
    [20] Jasek E,Mirecka J,Litwin JA. Effect of differentiating agents(all-trans retinoic acid and phorbol 12-myristate 13-acetate)on drug sensitivity of HL60 and NB4 cells in vitro[J]. Folia Histochem Cytobiol,2008,46(3):323-330.
    [21]高朝贤,郑浩渠,惠长野,等.红色荧光蛋白变种m Cherry的表达,纯化和应用探讨[J].国际生物制品学杂志,2017,40(1):31-35.
    [22]郭阁永,王加兴,谈佳琪,等.稳定生物发光金葡菌临床株假体周围关节感染动物模型的构建[J/CD].中华关节外科杂志(电子版),2016,10(4):399-406.
    [23] Wang J,Li J,Qian S,et al. Antibacterial surface design of Titanium-Based biomaterials for enhanced Bacteria-Killing and Cell-Assisting functions against periprosthetic joint infection[J].ACS Appl Mater Interfaces,2016,8(17):11162-11178.
    [24]沈灏,王俏杰,蒋垚,等.人工髋关节感染诊治的临床新进展[J/CD].中华关节外科杂志(电子版),2014,8(1):105-108.doi:10. 3877/cma. j. issn. 1674-134X. 2014. 01. 020.
    [25] Karahan HE,Wiraja C,Xu CJ,et al. Graphene materials in antimicrobial nanomedicine:current status and future perspectives[J/OL]. Adv Healthc Mater,2018,7(13,SI):e1701406. doi:10. 1002/adhm. 201701406.
    [26]杨晓玫,师尚礼.红、黄.绿三种颜色荧光质粒导入大肠杆菌中的稳定性表达[J].甘肃农业大学学报,2018,53(3):193-198.
    [27] Shen Y,Chen Y,Wu J,et al. Engineering of m Cherry variants with long Stokes shift,red-shifted fluorescence,and low cytotoxicity[J/OL]. PLo S One,2017,12(2):e0171257. doi:10. 1371/journal. pone. 0171257.
    [28] Xuan WM,Yao AZ,Schultz PG. Genetically encoded fluorescent probe for detecting sirtuins in living cells[J]. J Am Chem Soc,2017,139(36):12350-12353.
    [29] Arciola CR,Campoccia D,Speziale P,et al. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials[J].Biomaterials,2012,33(26):5967-5982.
    [30] Francolini I,Vuotto C,Piozzi AA. Antifouling and antimicrobial biomaterials:an overview[J]. APMIS,2017,125(4,SI):392-417.
    [31] Janeway CA,Jr.,Medzhitov R. Innate immune recognition[J].Annu Rev Immunol,2002,20:197-216.
    [32] Chen M, Wu S, Tsai T, et al. Regulation of neutrophil phagocytosis of Escherichia coli by antipsychotic drugs[J]. Int Immunopharmacol,2014,23(2):550-557.
    [33] Chen ML,Wu S,Tsai TC,et al. The caffeic acid in aqueous extract of Tournefortia sarmentosa enhances neutrophil phagocytosis of Escherichia coli[J]. Immunopharmacol Immunotoxicol,2014,36(6):390-396.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.