基因编辑技术在CAR-T治疗中的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in gene editing in the treatment of CAR-T
  • 作者:李成功 ; 梅恒 ; 胡豫
  • 英文作者:LI Chenggong;MEI Heng;HU Yu;
  • 关键词:CAR-T细胞 ; 基因编辑技术 ; CRISPR/Cas9 ; 通用型CAR-T细胞 ; T细胞耗竭
  • 中文刊名:ZLSW
  • 英文刊名:Chinese Journal of Cancer Biotherapy
  • 机构:华中科技大学同济医学院附属协和医院血液科湖北省肿瘤疾病细胞治疗临床医学中心;
  • 出版日期:2019-03-25
  • 出版单位:中国肿瘤生物治疗杂志
  • 年:2019
  • 期:v.26;No.138
  • 基金:国家自然科学基金资助项目(No.81570116);; 湖北省科技重大专项资助项目(No.2018ACA141)~~
  • 语种:中文;
  • 页:ZLSW201903015
  • 页数:8
  • CN:03
  • ISSN:31-1725/R
  • 分类号:91-98
摘要
嵌合抗原受体T(chimeric antigen receptor T,CAR-T)细胞是通过基因工程技术将T细胞改造成针对肿瘤特异性抗原的新型杀伤细胞,具有特异性强、效率高、非MHC限制等优点,在复发/难治性血液系统肿瘤和部分实体瘤中取得良好的治疗效果。但目前CAR-T细胞治疗仍面临着缺乏"现货供应"的通用型CAR-T细胞、抑制性免疫微环境和T细胞耗竭等问题。近年来,锌指核酸酶(zinc finger nucleases,ZFNs)、转录激活子样效应因子核酸酶(transcription activator like effector nucleases,TALENs)、规律性重复短回文序列簇[clustered regularly interspaced short palindromic repeats/CRISPR-associated(Cas9),CRISPR/Cas9]等新型基因编辑技术被广泛应用于细胞免疫治疗,为解决上述问题带来了希望。本文综述了目前CAR-T细胞治疗的研究进展及存在问题,并探讨了3种主要的基因编辑技术改良CAR-T细胞治疗的策略,为CAR-T细胞的基础研究和临床治疗提供参考。
        
引文
[1] SONPAVDE G. PD-1 and PD-L1 inhibitors as salvage therapy for urothelial carcinoma[J]. New Engl J Med, 2017, 376(11):1073-1074. DOI:10.1056/Nejme1701182.
    [2] NGHIEM P, BHATIA S, LIPSON E, et al. PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma[J]. New Engl J Med, 2016,374(26):2542-2552. DOI:10.1056/NEJMoa1603702.
    [3] MCCLANAHAN F, HANNA B, MILLER S, et al. PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia[J]. Blood,2015, 126(2):203-211. DOI:10.1182/blood-2015-01-622936.
    [4] TRAN E, LONGO D, URBA W. A milestone for CAR T cells[J]. New Engl J Med, 2017, 377(26):2593-2596. DOI:10.1056/Nejme1714680.
    [5] HIGANO C, BRIXEY M, BRYANT E, et al. Durable complete remission of acute nonlymphocytic leukemia associated with discontinuation of immunosuppression following relapse after allogeneic bone marrow transplantation. A case report of a probable graft-versus-leukemia effect[J]. Transplantation, 1990, 50(1):175-177. DOI:10.1097/00007890-199007000-00037.
    [6] PORTER D, CONNORS J, VAN D, et al. Graft-versus-tumor induction with donor leukocyte infusions as primary therapy for patients with malignancies[J]. J Clin Oncol, 1999, 17(4):1234-1347. DOI:10.1200/JCO.1999.17.4.1234.
    [7] RUELLA M, KALOS M. Adoptive immunotherapy for cancer[J].Immunol Rev, 2014, 257(1):14-38. DOI:10.1111/imr.12136.
    [8] MAUDE S, FREY N, SHAW P, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia[J]. New Engl J Med,2014, 371(16):1507-1517. DOI:10.1056/NEJMoa1407222.
    [9] PRASAD V. Immunotherapy:Tisagenlecleucelthe first approved CAR-T-cell therapy:implications for payers and policy makers[J].Nat Rev Clin Oncol, 2018, 15(1):11-12. DOI:10.1038/nrclinonc.2017.156.
    [10] MALISSEN B, GREGOIRE C, MALISSEN M, et al. Integrative biology of T cell activation[J]. Nat Immunol, 2014, 15(9):790-797.DOI:10.1038/ni.2959.
    [11] DOTTI G, GOTTSCHALK S, SAVOLDO B, et al. Design and development of therapies using chimeric antigen receptor-expressing T cells[J]. Immunol Rev, 2014, 257(1):107-126. DOI:10.1111/imr.12131.
    [12] BARRETT D, SINGH N, PORTER D, et al. Chimeric antigen receptor therapy for cancer[J]. Annu Rev Med, 2014, 65(3):33-47.DOI:10.1146/annurev-med-060512-150254.
    [13] HUTCHINS L, MAKHOUL I, EMANUEL P, et al. Targeting tumorassociated carbohydrate antigens:a phase I study of a carbohydrate mimetic-peptide vaccine in stage IV breast cancer subjects[J]. Oncotarget, 2017,8(58):99161-99178. DOI:10.18632/oncotarget.21959.
    [14] CHRISTOPHER W M, ROBBIE G M. Anti-GD2 CAR-T cells are potent in H3-K27M(+)diffuse midline gliomas[J]. Can Discov,2018, 8(6):672-680. DOI:10.1158/2159-8290.CD-RW2018-070.
    [15] CHMIELEWSKI M,ABKEN H. TRUCKs:the fourth generation of CARs[J]. Expert Opin Biol Ther, 2015, 15(8):1145-1154. DOI:10.1517/14712598.2015.1046430.
    [16] ESHHAR Z, WAKS T, GROSS G, et al. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma-subunit or zetasubunit of the immunoglobulin and T-cell receptors[J]. P Natl Acad Sci USA, 1993, 90(2):720-724. DOI:10.1073/pnas.90.2.720.
    [17]DAI H, WANG Y, LU X, et al. Chimeric antigen receptors modified t-cells for cancer therapy[J]. J Natl Cancer Inst, 2016, 108(7):439-445. DOI:ARTN djv43910.1093/jnci/djv439.
    [18] MARTYNISZYN A, KRAHL A, ANDRE M, et al. CD20-CD19 bispecific CAR-T cells for the treatment of B-Cell malignancies[J]. Hum Gene Ther, 2017, 28(12):1147-1157. DOI:10.1089/hum.2017.126.
    [19] FRY T, SHAH N, ORENTAS R, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy[J]. Nat Med, 2018, 24(1):20-28. DOI:10.1038/nm.4441.
    [20] BUDDE L, SONG J, KIM Y, et al. Remissions of acute myeloid leukemia and blastic plasmacytoid dendritic cell neoplasm following treatment with CD123-specific CAR-T cells:a firstinhuman clinical trial[J]. Blood, 2014,124(21):2346-2349. DOI:10.1182/blood-2014-01-622346.
    [21] PARK S, SERODY J, SHEA T, et al. A phase 1b/2 study of CD30-specific chimeric antigen receptor T-cell(CAR-T)therapy in combination with bendamustine in patients with CD30+Hodgkin and nonHodgkin lymphoma[J/OL].BMJ,2017,7(12):e019321[2019-01-12].https://www. ncbi. nlm. nih. gov/pubmed/29288188. DOI:10.1136/bmjopen-2017-019321.
    [22] CORNELL R, LOCKE F, BISHOP M, et al. A phase 1 multicenter study evaluating KITE-585, an autologous anti-BCMA CAR T-cell therapy, in patients with relapsed/refractory multiple myeloma[J]. J Clin Oncol, 2018, 36(15)?:DOI:DOI 10.1200/JCO.2018.36.15_suppl.TPS3103.
    [23] AN N, HOU Y, ZHANG Q, et al. Anti-multiple myeloma activity of nanobody-based anti-CD38 chimeric antigen receptor T cells[J].Mol Pharm, 2018, 15(10):4577-4588. DOI:10.1021/acs. molpharmaceut.8b00584.
    [24] RESTIFO N, DUDLEY M, ROSENBERG S. Adoptive immunotherapy for cancer:harnessing the T cell response[J]. Nat Rev Immunol, 2012, 12(4):269-281. DOI:10.1038/nri3191.
    [25] GILHAM D, DEBETS R, PULE M, et al. CAR-T cells and solid tumors:tuning T cells to challenge an inveterate foe[J]. Trends Mol Med, 2012,18(7):377-384. DOI:10.1016/j.molmed.2012.04.009.
    [26]NEWICK K, O'BRIEN S, MOON E, et al. CAR-T Cell therapy for solid tumors[J]. Annu Rev Med, 2017, 68(2):139-152. DOI:10.1146/annurev-med-062315-120245.
    [27] FENG K, LIU Y, GUO Y, et al. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers[J]. Protein&Cell, 2018, 9(10):838-847. DOI:10.1007/s13238-017-0440-4.
    [28] HECZEY A, LOUIS C, SAVOLDO B, et al. CAR-T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma[J]. Mol Ther, 2017, 25(9):2214-2224.DOI:10.1016/j.ymthe.2017.05.012.
    [29] ZHANG C, WANG Z, YANG Z, et al. Phase I escalating-dose trial of CAR-T therapy targeting CEA(+)metastatic colorectal cancers[J]. Mol Ther, 2017, 25(5):1248-1258. DOI:10.1016/j.ymthe.2017.03.010.
    [30] BROWN C, ALIZADEH D, STARR R, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy[J]. New Engl J Med, 2016, 375(26):2561-2569. DOI:10.1056/NEJMoa1610497.
    [31] SINGH N, PERAZZELLI J, GRUPP S A, et al. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies[J]. Sci Transl Med, 2016, 8(320):320ra3. DOI:10.1126/scitranslmed.aad5222.
    [32] TORIKAI H, COOPER L. Translational implications for off-theshelf immune cells expressing chimeric antigen receptors[J]. Mol ther, 2016, 24(7):1178-1186. DOI:10.1038/mt.2016.106.
    [33] RUELLA M, XU J, BARRETT D, et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell[J]. Nat Med, 2018, 24(10):1499-1503. DOI:10.1038/s41591-018-0201-9.
    [34] LIM W, JUNE C. The principles of engineering immune cells to treat cancer[J]. Cell, 2017, 168(4):724-740. DOI:10.1016/j. cell.2017.01.016.
    [35] DAVOODZADEH G, KARDAR G, SAEEDI Y, et al. Exhaustion of T lymphocytes in the tumor microenvironment:significance and effective mechanisms[J]. Cell Immunol, 2017, 32(1)1-14. DOI:10.1016/j.cellimm.2017.10.002.
    [36] CATAKOVIC K, KLIESER E, NEUREITER D, et al. T cell exhaustion:from pathophysiological basics to tumor immunotherapy[J]. Cell Commun Signal, 2017, 15(1):1-9. DOI:10.1186/s12964-016-0160-z.
    [37] LI H, ZHAO Y. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy[J]. Protein&Cell, 2017, 8(8):573-589.DOI:10.1007/s13238-017-0411-9.
    [38] REN J, ZHANG X, LIU X, et al. A versatile system for rapid multiplex genome-edited CAR-T cell generation[J]. Oncotarget, 2017, 8(10):17002-17011. DOI:10.18632/oncotarget.15218.
    [39] BIBIKOVA M, CARROLL D, SEGAL D, et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases[J]. Mol Cell Biol, 2001, 21(1):289-297. DOI:10.1128/MCB.21.1.289-297.2001.
    [40] SMITH J, BIBIKOVA M, WHITBY F, et al. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains[J]. Nucleic Acids Res, 2000, 28(17):3361-3369.
    [41] URNOV F, MILLER J, LEE Y, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases[J]. Nature, 2005, 435(7042):646-651. DOI:10.1038/nature03556.
    [42] CARROLL D. Progress and prospects:zinc-finger nucleases as gene therapy agents[J]. Gene Ther, 2008, 15(22):1463-1468. DOI:10.1038/gt.2008.145.
    [43] PETERSEN B, NIEMANN H. Advances in genetic modification of farm animals using zinc-finger nucleases(ZFN)[J]. Chromosome Res, 2015, 23(1):7-15. DOI:10.1007/s10577-014-9451-7.
    [44] BIBIKOVA M, GOLIC M, GOLIC K, et al. Targeted chromosomal cleavage and mutagenesis in drosophila using zinc-finger nucleases[J].Genetics, 2002, 161(3):1169-1175.DOI:10.0000/PMID12136019.
    [45] MILLER J, HOLMES M, WANG J, et al. An improved zinc-finger nuclease architecture for highly specific genome editing[J]. Nat Biotechnol, 2007, 25(7):778-85. DOI:10.1038/nbt1319.
    [46] CARROLL D. Genome engineering with zinc-finger nucleases[J].Genetics, 2011, 188(4):773-782. DOI:10.1534/genetics.111.131433.
    [47] IMANISHI M, NAKAMURA A, MORISAKI T, et al. Positive and negative cooperativity of modularly assembled zinc fingers[J]. Biochem Bioph Res, 2009, 387(3):440-443. DOI:10.1016/j. bbrc.2009.07.059.
    [48] MOSCOU M, BOGDANOVE A. A simple cipher governs DNA recognition by TAL effectors[J]. Science, 2009, 326(5959):1501-1508.DOI:10.1126/science.1178817.
    [49] MUSSOLINO C, CATHOMEN T. TALE nucleases:tailored genome engineering made easy[J]. Curr Opin Biotechnol, 2012, 23(5):644-650. DOI:10.1016/j.copbio.2012.01.013.
    [50] BOCH J, SCHOLZE H, SCHORNACK S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors[J]. Science,2009, 326(5959):1509-1512. DOI:10.1126/science.1178811.
    [51] HOCKEMEYER D, WANG H, KIANI S, et al. Genetic engineering of human pluripotent cells using TALE nucleases[J]. Nat Biotechnol, 2011, 29(8):731-734. DOI:10.1038/nbt.1927.
    [52] CHEN S, OIKONOMOU G, CHIU C, et al. A large-scale in vivo analysis reveals that TALENs are significantly more mutagenic than ZFNs generated using context-dependent assembly[J]. Nucleic Acids Res, 2013, 41(4):2769-2778. DOI:10.1093/nar/gks1356.
    [53] WIEDENHEFT B, STERNBERG S, DOUDNA J. RNA-guided genetic silencing systems in bacteria and archaea[J]. Nature, 2012, 482(7385):331-338. DOI:10.1038/nature10886.
    [54] SINKUNAS T, GASIUNAS G, FREMAUX C, et al. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system[J]. EMBO J, 2011, 30(7):1335-1342.DOI:10.1038/emboj.2011.41.
    [55] CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823.DOI:10.1126/science.1231143.
    [56] ZHANG H, ZHANG J, WEI P, et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation[J]. Plant Biotechnol J, 2014, 12(6):797-807. DOI:10.1111/pbi.12200.
    [57] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dualRNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science, 2012, 337(6096):816-821. DOI:10.1126/science.1225829.
    [58] TORIKAI H, REIK A, LIU P, et al. A foundation for universal Tcell based immunotherapy:T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR[J]. Blood, 2012, 119(24):5697-5705. DOI:10.1182/blood-2012-01-405365.
    [59] TORIKAI H, REIK A, SOLDNER F, et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors[J]. Blood, 2013, 122(8):1341-1349. DOI:10.1182/blood-2013-03-478255.
    [60] REN J, LIU X, FANG C, et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition[J]. Clin Cancer Res, 2017, 23(9):2255-2266. DOI:10.1158/1078-0432.CCR-16-1300.
    [61] LIU X, ZHANG Y, CHENG C, et al. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells[J]. Cell Res, 2017, 27(1):154-157. DOI:10.1038/cr.2016.142.
    [62] QASIM W, AMROLIA P, SAMARASINGHE S, et al. First clinical application of talen engineered universal CAR19-T Cells in B-ALL[J]. Blood, 2015, 126(23):2046-2046.DOI:10.1182/blood-2012-01-405365
    [63] QASIM W, ZHAN H, SAMARASINGHE S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR-T cells[J]. Sci Transl Med, 2017, 9(374):2013-2019.DOI:10.1126/scitranslmed.aaj2013.
    [64] RITCHIE D, NEESON P, KHOT A, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia[J]. Mol Ther, 2013, 21(11):2122-2129. DOI:10.1038/mt.2013.154.
    [65] WHERRY E, KURACHI M. Molecular and cellular insights into T cell exhaustion[J]. Nat Rev Immunol, 2015, 15(8):486-499. DOI:10.1038/nri3862.
    [66] HOOS A. Development of immuno-oncology drugs-from CTLA4 to PD1 to the next generations[J]. Nat Rev Drug Discov, 2016, 15(4):235-247. DOI:10.1038/nrd.2015.35.
    [67] SU S, HU B, SHAO J, et al. CRISPR-Cas9 mediated efficient PD-1disruption on human primary T cells from cancer patients[J/OL].Sci Rep, 2016, 6:20070[2019-01-12]. https://www.ncbi.nlm.nih.gov/pubmed/26818188.DOI:10.1038/srep20070.
    [68] CYRANOSKI D. CRISPR gene-editing tested in a person for the first time[J]. Nature, 2016, 539(7630):479-488. DOI:10.1038/nature.2016.20988.
    [69] CHONG E, MELENHORST J, LACEY S, et al. PD-1 blockade modulates chimeric antigen receptor(CAR)-modified T cells:refueling the CAR[J]. Blood, 2017, 129(8):1039-1041. DOI:10.1182/blood-2016-09-738245.
    [70] MY K. Genome editing using CRISPR-Cas9 to increase the therapeutic index of antigen-specific immunotherapy in acute myeloid leukemia.[J]. Mol Ther, 2016, 24(S1):108-116. DOI:10.1016/j.celrep.2016.09.079.
    [71] GOMES-SILVA D, SRINIVASAN M, SHARMA S, et al. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies[J]. Blood, 2017, 130(3):285-296. DOI:10.1182/blood-2017-01-761320.
    [72] PEREZ E, WANG J, MILLER J, et al. Establishment of HIV-1 resistance in CD4+T cells by genome editing using zinc-finger nucleases[J]. Nat Biotechnol, 2008, 26(7):808-816. DOI:10.1038/nbt1410.
    [73] American Association for Cancer Research. FDA approves second car t-cell therapy[J]. Can Discov, 2018, 8(1):5-6. DOI:10.1158/2159-8290.CD-NB2017-155.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.