HNIW/GAP混合物燃速的实验研究与数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Research and Numerical Simulation on the Burning Rate of HNIW/GAP Mixture
  • 作者:李恒 ; 赵凤起 ; 裴庆 ; 李猛 ; 徐司雨 ; 姚二岗 ; 姜菡雨 ; 郝海霞 ; 马晓迅
  • 英文作者:LI Heng;ZHAO Feng-qi;PEI Qing;LI Meng;XU Si-yu;YAO Er-gang;JIANG Han-yu;HAO Hai-xia;MA Xiao-xun;Science and Technology on Combustion and Explosion Laboratory, Xi′an Modern Chemistry Research Institute;College of Chemical Engineering, Northwest University;
  • 关键词:物理化学 ; HNIW ; GAP ; 粒径 ; 预热层厚度 ; 燃烧机理 ; CL-20 ; 自持燃烧
  • 英文关键词:physical chemistry;;HNIW;;GAP;;particle size;;preheated layer thickness;;combustion mechanism;;CL-20;;self-sustained combustion
  • 中文刊名:BGXB
  • 英文刊名:Chinese Journal of Explosives & Propellants
  • 机构:西安近代化学研究所燃烧与爆炸技术重点实验室;西北大学化工学院;
  • 出版日期:2019-04-15
  • 出版单位:火炸药学报
  • 年:2019
  • 期:v.42;No.204
  • 基金:国家自然科学基金(No.21473130)
  • 语种:中文;
  • 页:BGXB201902010
  • 页数:8
  • CN:02
  • ISSN:61-1310/TJ
  • 分类号:54-61
摘要
制备了HNIW/GAP二元混合物,在6~15MPa压强范围测试了其静态燃速,研究了HNIW含量和压强对混合物燃速的影响;分析了HNIW粒径与预热层厚度对HNIW/GAP混合物燃速的影响规律;基于Relay-Race模型对燃速进行了模拟;分析了燃速控制机理,并采用DSC对HNIW/GAP混合物进行了热分析研究。结果表明,Relay-Race模型可以预测HNIW低含量时的部分燃速,在6~9MPa下,混合物燃速随HNIW含量的增加而增大,在12~15MPa下,混合物燃速随HNIW含量增加先减小后增大;在压强低于约0.2MPa下,粒径62μm的HNIW颗粒低于预热层厚度,不经历自持燃烧,增大HNIW粒径可以促进混合物燃烧;在HNIW与GAP质量比为1∶1条件下,模拟的燃速增幅会随着粒径的增大而减小。当HNIW质量分数在0~30%时,混合物燃烧过程的反应控制区域由GAP转移至HNIW燃烧区域,从而导致燃速变化。
        HNIW/GAP binary mixture was prepared. Its static burning rate was measured in the pressure range of 6-15 MPa. The effects of HNIW content and pressure on the burning rate of mixture were investigated. The influence rule of HNIW particle size and preheated layer thickness on the burning rate of HNIW/GAP mixture was analyzed. The burning rate was simulated based on Relay-Race model. The mechanism of controlling burning rate was analyzed and the thermal analysis study of HNIW/GAP mixture was performed by DSC. The results show that the Relay-Race model can predict the partial burning rate of HNIW at low HNIW content. The burning rate of the mixture increases with increasing the HNIW content at 6-9 MPa. The burning rate of the mixture decreases firstly and then increases with increasing the HNIW content at 12-15 MPa. When the pressure is lower than about 0.2 MPa, the particle of HNIW with the particle size of 62μm is lower than preheated layer thickness and does not undergo self-sustained combustion and the combustion of mixture can be promoted by increasing the particle size of HNIW. The simulated amplitude of mixture burning rate decreases with the increase of HNIW particle size under the condition of mass ratio of HNIW/GAP as 1∶1. The reaction controlling zone of mixture combustion process transfers from GAP combustion zone to that of HNIW with the HNIW mass ratio changing from 0 to 30%, which results in the change of burning rate.
引文
[1] 赵凤起,徐司雨,李猛,等.含能材料燃烧模拟[M].北京:国防工业出版社,2017:137-187.
    [2] Beckstead M W,Puduppakkam K,Thakre P,et al.Modeling of combustion and ignition of solid-propellant ingredients[J].Progress in Energy and Combustion Science,2007,33(6):497-551.
    [3] Sinditskii V P,Egorshev V Y,Berezin M,et al.Combustion mechanism of nitro ester binders with nitramines[J].Combustion,Explosion and Shock Waves,2012,48(2):163-176.
    [4] Puduppakkam K,Tanner M,Beckstead M.RDX/GAP pseudo-propellant combustion modeling[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.New York:AIAA,2006:1-13.
    [5] QJB 770B-2005,方法 706.2 燃速水下声发射法[S].2005.
    [6] QJ 925-85,复合固体推进剂药浆燃速测试方法[S].1985.
    [7] 裴庆,赵凤起,高红旭,等.三唑含能离子盐在固体推进剂中的应用研究 [J].兵工学报,2014,35(9):1388-1392.PEI Qing,ZHAO Feng-qi,GAO Hong-xu,et al.Research on application of energetic triazole ionic salts in solid propellant[J].Acta Armamentarii,2014,35(9):1388-1392.
    [8] 裴庆,赵凤起,郝海霞,等.RDX-CMDB推进剂燃速温度敏感系数的实验研究 [J].火炸药学报,2016,39(4):73-76.PEI Qing,ZHAO Feng-qi,HAO Hai-xia,et al.Experimental research on temperature sensitivity coefficient of burning rate for RDX-CMDB propellant[J].Chinese Journal of Explosives & Propellant(Huozhayao Xuebao),2016,39(4):73-76.
    [9] Fogelzang A E,Denisyuk A P,Serushkin V V,et al.Burning behavior of composite propellants with fast-burning inclusions[J].Journal of Propulsion and Power,2000,16(2):374-376.
    [10] Zarko V E,Gusachenko L K.Simulation of energetic materials combustion[R].Novosibirsk:Russian Academy of Sciences Novosibirsk Institute of Chemical Kinetics and Combustion,2000.
    [11] Lengellé G,Duterque J,Trubert J.Combustion of solid propellants[R].The RTO/VKI Special Course on Internal Aerodynamics in Solid Rocket Propulsion.Rhode-Saint-Genèse:RTO-EN-023,2002:1-62.
    [12] Atwood A,Boggs T,Curran P,et al.Burning rate of solid propellant ingredients,part 1:Pressure and initial temperature effects [J].Journal of Propulsion and Power,1999,15(6):740-747.
    [13] Sinditskii V,Chernyi A,Yurova S Y,et al.Thermal decomposition and combustion of cocrystals of CL-20 and linear nitramines [J].RSC Advances,2016,6(84):81386-81393.
    [14] Puduppakkam K V,Beckstead M W.Combustion modeling of glycidyl azide polymer with detailed kinetics [J].Combustion Science and Technology,2005,177(9):1661-1697.
    [15] Kubota N,Sonobe T,Yamamoto A,et al.Burning rate characteristics of GAP propellants [J].Journal of Propulsion and Power,1990,6(6):686-689.
    [16] Zenin A,Finjalov S.Physics of GAP combustion[C]//38th Aerospace Sciences Meeting and Exhibit.New York:AIAA,2000:1-14.
    [17] Korobeinichev O P,Kuibida L V,Volkov E N,et al.Mass spectrometric study of combustion and thermal decomposition of GAP [J].Combustion and Flame,2002,129(1):136-150.
    [18] Frankel M B,Grant L R,Flanagan J E.Historical development of glycidyl azide polymer [J].Journal of Propulsion and Power,1992,8(3):560-563.
    [19] Hori K,Kimura M.Combustion mechanism of glycidyl azide polymer[J].Propellants,Explosives,Pyrotechnics,1996,21(3):160-165.
    [20] Kalman J,Essel J.Influence of particle size on the combustion of CL-20/HTPB propellants[J].Propellants,Explosives,Pyrotechnics,2017,42(11):1261-1267.
    [21] 周晓杨,唐根,庞爱民,等.GAP/CL-20高能固体推进剂燃烧性能影响因素[J].固体火箭技术,2017,40(5):592-595.ZHOU Xiao-yang,TANG Gen,PANG Ai-min,et al.Study on combustion performance of GAP/CL-20 high-energy solid propellants[J].Journal of Solid Rocket Technology,2017,40(5):592-595.
    [22] Golfier M,Graindorge H,Longevialle Y,et al.New energetic molecules and their applications in energetic materials[C]//Proceedings 29th International Annual Conference of ICT.Karlsruhe:ICT,1998:1-18.
    [23] Go?ofit T,Zy.Thermal decomposition properties and compatibility of CL-20 with binders HTPB,PBAN,GAP and polyNIMMO [J].Journal of Thermal Analysis and Calorimetry,2015,119(3):1931-1939.
    [24] Turcotte R,Vachon M,Kwok Q S,et al.Thermal study of HNIW (CL-20) [J].Thermochimica Acta,2005,433 (1):105-115.
    [25] Dong L,Li X,Yang R.Thermal decomposition study of HNIW by synchrotron photoionization mass spectrometry [J].Propellants,Explosives,Pyrotechnics,2011,36(6):493-498.
    [26] Wang Tian-fang,Li Shu-fen,Yang Bin,et al.Thermal decomposition of glycidyl azide polymer studied by synchrotron photoionization mass spectrometry [J].The Journal of Physical Chemistry B,2007,111(10):2449-2455.
    [27] 王凯.含能材料自催化分解特性与热安全性研究[D].南京:南京理工大学,2016.WANG Kai.Research on the thermal autocatalytic decomposition characteristic and thermal safety of energetic materials[D].Nanjing:Nanjing University of Science & Technology,2016.Experimental Research and Numerical Simulation on the Burning Rate of HNIW/GAP MixtureLI Heng,ZHAO Feng-qi,PEI Qing,LI Meng,XU Si-yu,YAO Er-gang,JIANG Han-yu,HAO Hai-xia,MA Xiao-xunChinese Journal of Explosives & Propellants,2019,42(2):152-159.HNIW/GAP binary mixture was prepared.Its static burning rate was measured in the pressure range of 6-15MPa.The effects of HNIW content and pressure on the burning rate of mixture were investigated.The influence rule of HNIW particle size and preheated layer thickness on the burning rate of HNIW/GAP mixture was analyzed.The burning rate was simulated based on Relay-Race model.The mechanism of controlling burning rate was analyzed and the thermal analysis study of HNIW/GAP mixture was performed by DSC.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.