Adsorption and Decarbonylation Reaction of Furfural on the Pd(111) and M/Pd(111)(M=Ni, Cu and Ru) Surfaces
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adsorption and Decarbonylation Reaction of Furfural on the Pd(111) and M/Pd(111)(M=Ni, Cu and Ru) Surfaces
  • 作者:夏盛杰 ; 方镭 ; 钱梦丹 ; 孟跃 ; 倪哲明
  • 英文作者:XIA Sheng-Jie;FANG Lei;QIAN Meng-Dan;MENG Yue;NI Zhe-Ming;Laboratory of Advanced Catalytic Materials, College of Chemical Engineering, Zhejiang University of Technology;School of Life Sciences, Huzhou University;
  • 英文关键词:density functional theory;;furfural;;Pd(111);;bimetallic catalyst;;adsorption;;decarbonylation mechanism
  • 中文刊名:JGHX
  • 英文刊名:结构化学(英文版)
  • 机构:Laboratory of Advanced Catalytic Materials, College of Chemical Engineering, Zhejiang University of Technology;School of Life Sciences, Huzhou University;
  • 出版日期:2019-02-15
  • 出版单位:Chinese Journal of Structural Chemistry
  • 年:2019
  • 期:v.38;No.292
  • 基金:supported by the National Natural Science Foundation of China(No.21503188)
  • 语种:英文;
  • 页:JGHX201902006
  • 页数:13
  • CN:02
  • ISSN:35-1112/TQ
  • 分类号:52-64
摘要
By performing with density functional theory(DFT) method, the detailed adsorption process and the catalytic decarbonylation mechanisms of furfural over Pd(111) and M/Pd(111)(M = Ni, Cu, Ru) surfaces toward furan were clarified. The results of atomic size factor, formation energy and d-band center showed that Ru/Pd(111) surface was the most stable and active. The adsorption energies of furfural on the different surfaces followed the order Ru/Pd(111) > Cu/Pd(111) > Pd(111) > Ni/Pd(111). After analyzing Mulliken atomic charge population and the deformation density, we can find that on Ru/Pd(111) surface, the number of charge transfer was the most and the interaction was the strongest. Therefore, its adsorption energy was the highest. Furthermore, the furfural decarbonylation pathway is more kinetically feasible on bimetallic surface, and the reaction is the most likely to occur on Ru/Pd(111).
        By performing with density functional theory(DFT) method, the detailed adsorption process and the catalytic decarbonylation mechanisms of furfural over Pd(111) and M/Pd(111)(M = Ni, Cu, Ru) surfaces toward furan were clarified. The results of atomic size factor, formation energy and d-band center showed that Ru/Pd(111) surface was the most stable and active. The adsorption energies of furfural on the different surfaces followed the order Ru/Pd(111) > Cu/Pd(111) > Pd(111) > Ni/Pd(111). After analyzing Mulliken atomic charge population and the deformation density, we can find that on Ru/Pd(111) surface, the number of charge transfer was the most and the interaction was the strongest. Therefore, its adsorption energy was the highest. Furthermore, the furfural decarbonylation pathway is more kinetically feasible on bimetallic surface, and the reaction is the most likely to occur on Ru/Pd(111).
引文
(1)Lin, L. M.; Luo, X. L.; Pang, J.; Wang, Q.; Yan, Z. M.; Zhuang, W. J.; Zheng, B. D.; Zheng, Y. F. Structural properties and potential applications of cellulose nanofiber from bamboo shoot shell. Chin. J. Struct. Chem. 2017, 36, 533-542.
    (2)Alice,D.;Fabiana,S.;John,M.W.;Tom,D.S.;Helen,C.H.Furfurylaminesfrombiomass:transaminasecatalysedupgradingoffurfurals.Appl.Green Chem. 2017, 19, 397-404.
    (3)Ashutosh,M.;Stuart,K.B.;Todd,B.V.;Marykate,O.;Melvin,P.T.;David,K.J.Productionoffurfuralfromprocess-relevantbiomass-derived pentoses in a biphasic reaction. ACS Sustainable Chem. Eng. 2017, 5, 5694-5701.
    (4)Zhang, L. X.; Xi, G. Y.; Chen, Z.; Jiang, D.; Yu, H. B.; Wang, X. C. Highly selective conversion of glucose into furfural over modified zeolites. Chem.Eng. J. 2017, 307, 868-876.
    (5)Mohammad,G.;Samahe,S.;Samira,S.;Vahid,F.AnovelconsecutiveapproachforthepreparationofCu-MgOcatalystswithhighactivityfor hydrogenation of furfural to furfuryl alcohol. Catal. Lett. 2017, 147, 318-327.
    (6)Jing,L.;Matteo,M.;Hongseok,Y.;Lisandra,A.R.;Cong,W.Christopher,B.M.;Paolo,F.;Raymond,J.G.TheH2pressuredependenceof hydrodeoxygenation selectivities for furfural over Pt/C catalysts. Catal. Lett. 2016, 146, 711-717.
    (7)Martin, J. T.; Lee, J. D.; Mark, A. I.; Christopher, M. P.; Karen, W.; Adam, F. L.; Georgios, K. Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions. Appl. Catal. B-Environ. 2016, 180, 580-585.
    (8)Bhogeswararao, S.; Srinivas, D. Catalytic conversion of furfural to industrial chemicals over supported Pt and Pd catalysts. J. Catal. 2015, 327, 65-77.
    (9)Tamao,I.;Kurumi,K.;Kota,K.;Tetsuo,H.;Kengo,N.;Hironori,O.;Takushi,Y.;Akiyuki,H.;Haruno,M.;Yusuke,I;Masaru,U.;Makoto,T.Efficientdecarbonylationoffurfuraltofurancatalyzedbyzirconia-supportedpalladiumclusterswithlowatomicity.Chemsuschen.2016,9,3441-3447.
    (10)Ni, Z. M.; Xia, M. Y.; Shi, W.; Qian, P. P. Adsorption and decarbonylation reaction of furfural on Pt(111)surface. Acta Phys–Chim. Sin. 2013, 29,1916-1922.
    (11)Wang, C. T.; Wang, L.; Zhang, J.; Wang, H.; Lewis, J. P.; Xiao, F. S. Product selectivity controlled by zeolite crystals in biomass hydrogenation over a palladium catalyst. J. Am. Chem. Soc. 2016, 138, 7880-7883.
    (12)Surapas, S.; Daniel, E. R. Hydrodeoxygenation of furfural over supported metal catalysts:a comparative study of Cu, Pd and Ni. Catal. Lett. 2011, 141,784-791.
    (13)Bhogeswararao, S.; Srinivas, D. Catalytic conversion of furfural to industrial chemicals over supported Pt and Pd catalysts. J. Catal. 2015, 327, 65-77.
    (14)Siriwan, N.; Takeshi, W.; Naohiro, N.; Weena, S.; Orawon, C.; Yasuski, E. Bimetallic Pt-Au nanocatalysts electrochemically deposited on boron-doped diamond electrodes for nonenzymatic glucose detection. Biosens. Bioelectron 2017, 98, 76-82.
    (15)Lucília, S. R.; Juan, J. D.; José, J. M.; Fernando, R. P. Carbon supported Ru-Ni bimetallic catalysts for the enhanced one-pot conversion of cellulose to sorbitol. Appl. Catal. B-Environ. 2017, 217, 265-264.
    (16)Obaid, F. A.; Sarwat, L.; Peter, J. M.; Germma, L. B.; Daniel, R. J.; Liu, X.; Jennifer, K. E.; David, J. M.; David, K. K.; Graham, J. H. Pd-Ru/TiO2catalyst an active and selective catalyst for furfural hydrogenation. Catal. Sci. Technol. 2016, 6, 234-242.
    (17)Wan, W. M.; Glen, R. J.; Xiong, K.; Gionisios, G. V.; Chen, J. G. G. Ring-opening reaction of furfural and tetrahydrofurfuryl alcohol on hydrogen-predosed iridium(111)and cobalt/iridium(111)surfaces. ChemCatChem. 2017, 9, 1701-1707.
    (18)Mehmet, F. F. Direct decarbonylation of furfural to furan:a density functional theory study on Pt-graphene. Appl. Surf. Sci. 2017, 405, 395-404.
    (19)Delley, B. From molecules to solids with the DMol(3)approach. J. Chem. Phys. 2000, 113, 7756-7764.
    (20)Perdew,J.P.;Chewary,J.A.;Vosko,S.H.;Jackson,K.A.;Pedersone,M.R.;Singh,D.J.;Fiolhais,C.Atoms,molecules,solids,and surfaces-applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671-6687.
    (21)Ge,Q.;Jenkins,S.J.;King,D.A.Localisationofadsorbate-induceddemagnetisation:COchemisorbedonNi(110).Chem.Phys.Lett.2000,327,125-130.
    (22)Tao, J.; Yao, Z. J.; Xue, F. Fundamentals of Material Science. Chemical Industry Press 2006, 32-41.
    (23)Palotas, K.; Bako, I.; Bugyi, L. Structural, electronic and adsorption properties of Rh(111)/Mo(110)bimetallic catalyst:a DFT study Appl. Surf. Sci.2016, 389, 1094-1103.
    (24)Zheng, C.; Li, G.; Zheng, H. Z.; Shu, X. Y.; Zou, J. P.; Peng, P. Mechanism of surface effect and selective catalytic performance of MnO2 nanorod:DFT+U study. Appl. Surf. Sci. 2017, 420, 205-213.
    (25)Gomez, E. D.; Amaya-Roncancio, S.; Avalle, L. B.; Linares, D. H.; Gimenez, M. C. DFT study of adsorption and diffusion of atomic hydrogen on metal surfaces. Appl. Surf. Sci. 2017, 420, 1-8.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.