Understanding the roles of Ti on the structure and electrochemical performances of Li_2Ru_(1-x)Ti_xO_3 cathode materials for Li-ion batteries
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Understanding the roles of Ti on the structure and electrochemical performances of Li_2Ru_(1-x)Ti_xO_3 cathode materials for Li-ion batteries
  • 作者:Hu ; Zhao ; Yanchao ; Shi ; Li ; Xue ; Yingzhi ; Cheng ; Zhongbo ; Hu ; Xiangfeng ; Liu
  • 英文作者:Hu Zhao;Yanchao Shi;Li Xue;Yingzhi Cheng;Zhongbo Hu;Xiangfeng Liu;College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences;Inner Mongolia Synthetic Chemical Institute;School of Chemical Engineering, Shandong University of Technology;
  • 英文关键词:Lithium-ion battery;;Li-rich cathode;;Ti doping;;Rietveld refinement
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences;Inner Mongolia Synthetic Chemical Institute;School of Chemical Engineering, Shandong University of Technology;
  • 出版日期:2019-06-15
  • 出版单位:Journal of Energy Chemistry
  • 年:2019
  • 期:v.33
  • 基金:supported by the National Natural Science Foundation of China (Grant Nos. 11575192 and 21403129);; the Scientific Instrument Developing Project (Grant No. ZDKYYQ20170001);; the International Partnership Program (Grant No. 211211KYSB20170060);; “Hundred Talents Project” of the Chinese Academy of Sciences;; Natural Science Foundation of Beijing Municipality (Grant No. 2182082)
  • 语种:英文;
  • 页:TRQZ201906002
  • 页数:8
  • CN:06
  • ISSN:10-1287/O6
  • 分类号:17-24
摘要
The lattice doping has been widely used to improve the electrochemical performances of Li-rich cathode materials but the roles of the introduced foreign atoms are still not very clear.Herein,a series of Li_2Ru_(1-x)Ti_xO_3 solid solutions have been synthesized and the roles of Ti doping on the structural and electrochemical properties of Li_2RuO_3 have been comprehensively investigated.The Rietveld refinement exhibits that the interlayer spacing gradually shortens with increasing Ti content.This shrinkage is favorable to the layered structure stability but increases the lithium diffusion barrier.Galvanostatic measurements show that Li_2Ru_(0.8)Ti_(0.2)O_3 possesses the best cyclability with 196.9 and 196.1 m Ah g~(-1)for charge and discharge capacity retaining after 90 cycles,respectively.Cyclic voltammetry scanning indicates that Ti dopant promotes the formation of more peroxo-or superoxo-like species but reduces the initial coulumbic efficiency.Results of electrochemical impedance spectroscopy display that Ti doping reduces the charge transfer impedance,which facilitates the lithium-ion diffusion across the electrolyteelectrode interface and improves the electronic conductivity.Li_2Ru_(0.8)Ti_(0.2)O_3exhibits the best electrochemical performance owing to the balance among all the factors discussed above.This study also offers some new insights into optimizing the electrochemical performances of Li-rich cathode materials through the lattice doping.
        The lattice doping has been widely used to improve the electrochemical performances of Li-rich cathode materials but the roles of the introduced foreign atoms are still not very clear.Herein,a series of Li_2Ru_(1-x)Ti_xO_3 solid solutions have been synthesized and the roles of Ti doping on the structural and electrochemical properties of Li_2RuO_3 have been comprehensively investigated.The Rietveld refinement exhibits that the interlayer spacing gradually shortens with increasing Ti content.This shrinkage is favorable to the layered structure stability but increases the lithium diffusion barrier.Galvanostatic measurements show that Li_2Ru_(0.8)Ti_(0.2)O_3 possesses the best cyclability with 196.9 and 196.1 m Ah g~(-1)for charge and discharge capacity retaining after 90 cycles,respectively.Cyclic voltammetry scanning indicates that Ti dopant promotes the formation of more peroxo-or superoxo-like species but reduces the initial coulumbic efficiency.Results of electrochemical impedance spectroscopy display that Ti doping reduces the charge transfer impedance,which facilitates the lithium-ion diffusion across the electrolyteelectrode interface and improves the electronic conductivity.Li_2Ru_(0.8)Ti_(0.2)O_3exhibits the best electrochemical performance owing to the balance among all the factors discussed above.This study also offers some new insights into optimizing the electrochemical performances of Li-rich cathode materials through the lattice doping.
引文
[1]M.Armand,J.M.Tarascon,Nature 451(2008)652-657.
    [2]V.Etacheri,R.Marom,R.Elazari,G.Salitra,D.Aurbach,Energy Environ.Sci.4(2011)3243-3262.
    [3]J.B.Goodenough,Y.Kim,Chem.Mater.22(2010)587-603.
    [4]R.Marom,S.F.Amalraj,N.Leifer,D.Jacob,D.Aurbach,J.Mater.Chem.21(2011)9938-9954.
    [5]X.Shen,Z.Tian,R.Fan,L.Shao,D.Zhang,G.Cao,L.Kou,Y.Bai,J.Energy Chem.,27(2018)1067-1090.
    [6]B.L.Ellis,K.T.Lee,L.F.Nazar,Chem.Mater.22(2010)691-714.
    [7]J.W.Fergus,J.Power Sources 195(2010)939-954.
    [8]E.M.Erickson,C.Ghanty,D.Aurbach,J.Phys.Chem.Lett.5(2014)3313-3324.
    [9]A.Manthiram,J.Phys.Chem.Lett.2(2011)176-184.
    [10]H.Yu,H.Zhou,J.Phys.Chem.Lett.4(2013)1268-1280.
    [11]T.Ohzuku,Y.Makimura,Chem.Lett.(2001)744-745.
    [12]Y.Makimura,T.Ohzuku,J.Power Sources 119(2003)156-160.
    [13]K.S.Kang,Y.S.Meng,J.Breger,C.P.Grey,G.Ceder,Science 311(2006)977-980.
    [14]B.J.Hwang,Y.W.Tsai,D.Carlier,G.Ceder,Chem.Mater.15(2003)3676-3682.
    [15]M.H.Lee,Y.Kang,S.T.Myung,Y.K.Sun,Electrochim.Acta 50(2004)939-948.
    [16]N.Yabuuchi,Y.Koyama,N.Nakayama,T.Ohzuku,J.Electrochem.Soc.152(2005)A1434-A1440.
    [17]C.Nithya,R.Thirunakaran,A.Sivashanmugam,G.V.M.Kiruthika,S.Gopukumar,J.Phys.Chem.C 113(2009)17936-17944.
    [18]C.Nithya,V.S.S.Kumari,S.Gopukumar,PCCP 13(2011)6125-6132.
    [19]D.Y.W.Yu,K.Yanagida,Y.Kato,H.Nakamura,J.Electrochem.Soc.156(2009)A417-A424.
    [20]M.Sathiya,K.Ramesha,G.Rousse,D.Foix,D.Gonbeau,A.S.Prakash,M.L.Doublet,K.Hemalatha,J.M.Tarascon,Chem.Mater.25(2013)1121-1131.
    [21]G.R.Jain,J.S.Yang,M.Balasubramanian,J.J.Xu,Chem.Mater.17(2005)3850-3860.
    [22]M.M.Thackeray,C.S.Johnson,J.T.Vaughey,N.Li,S.A.Hackney,J.Mater.Chem.15(2005)2257-2267.
    [23]M.H.Rossouw,M.M.Thackeray,Mater.Res.Bull.26(1991)463-473.
    [24]Y.Paik,C.P.Grey,C.S.Johnson,J.S.Kim,M.M.Thackeray,Chem.Mater.14(2002)5109-5115.
    [25]J.R.Croy,S.H.Kang,M.Balasubramanian,M.M.Thackeray,Electrochem.Commun.13(2011)1063-1066.
    [26]A.Ito,D.Li,Y.Ohsawa,Y.Sato,J.Power Sources 183(2008)344-346.
    [27]J.Y.Baek,H.-W.Ha,I.-Y.Kim,S.-J.Hwang,J.Phys.Chem.C 113(2009)17392-17398.
    [28]D.Mohanty,S.Kalnaus,R.A.Meisner,K.J.Rhodes,J.Li,E.A.Payzant,D.L.Wood III,C.Daniel,J.Power Sources 229(2013)239-248.
    [29]H.Koga,L.Croguennec,M.Menetrier,P.Mannessiez,F.Weill,C.Delmas,S.Belin,J.Phys.Chem.C 118(2014)5700-5709.
    [30]M.M.Thackeray,S.-H.Kang,C.S.Johnson,J.T.Vaughey,R.Benedek,S.A.Hackney,J.Mater.Chem.17(2007)3112-3125.
    [31]C.S.Johnson,N.Li,C.Lefief,J.T.Vaughey,M.M.Thackeray,Chem.Mater.20(2008)6095-6106.
    [32]J.S.Kim,C.S.Johnson,J.T.Vaughey,M.M.Thackeray,S.A.Hackney,Chem.Mater.16(2004)1996-2006.
    [33]Z.H.Lu,Z.H.Chen,J.R.Dahn,Chem.Mater.15(2003)3214-3220.
    [34]K.A.Jarvis,Z.Deng,L.F.Allard,A.Manthiram,P.J.Ferreira,Chem.Mater.23(2011)3614-3621.
    [35]C.Genevois,H.Koga,L.Croguennec,M.Ménétrier,C.Delmas,F.Weill,J.Phys.Chem.C 119(2015)75-83.
    [36]H.Koga,L.Croguennec,P.Mannessiez,M.Ménétrier,F.Weill,L.Bourgeois,M.Duttine,E.Suard,C.Delmas,J.Phys.Chem.C 116(2012)13497-13506.
    [37]A.Manthiram,J.C.Knight,S.-T.Myung,S.-M.Oh,Y.-K.Sun,Adv.Energy Mater.6(2016)1501010.
    [38]B.Song,Z.Liu,M.O.Lai,L.Lu,PCCP 14(2012)12875-12883.
    [39]S.J.Shi,J.P.Tu,Y.Y.Tang,Y.X.Yu,Y.Q.Zhang,X.L.Wang,C.D.Gu,J.Power Sources 228(2013)14-23.
    [40]J.Zheng,M.Gu,J.Xiao,P.Zuo,C.Wang,J.-G.Zhang,Nano Lett.13(2013)3824-3830.
    [41]Y.Bai,Y.Li,C.Wu,J.Lu,H.Li,Z.Liu,Y.Zhong,S.Chen,C.Zhang,K.Amine,Energy Technol.3(2015)843-850.
    [42]Y.Li,Y.Bai,X.Bi,J.Qian,L.Ma,J.Tian,C.Wu,F.Wu,J.Lu,K.Amine,ChemSus Chem 9(2016)728-735.
    [43]Y.Li,Y.Bai,C.Wu,J.Qian,G.Chen,L.Liu,H.Wang,X.Zhou,F.Wu,J.Mater.Chem.4(2016)5942-5951.
    [44]Y.Li,C.Wu,Y.Bai,L.Liu,H.Wang,F.Wu,N.Zhang,Y.Zou,ACS Appl.Mater.Interfaces 8(2016)18832-18840.
    [45]A.James,J.B.Goodenough,J.Solid State Chem.74(1988)287-294.
    [46]S.A.J.Kimber,I.I.Mazin,J.Shen,H.O.Jeschke,S.V.Streltsov,D.N.Argyriou,R.Valenti,D.I.Khomskii,Phys.Rev.B 89(2014)081408.
    [47]S.Sarkar,P.Mahale,S.Mitra,J.Electrochem.Soc.161(2014)A934-A942.
    [48]D.Mori,H.Sakaebe,M.Shikano,H.Kojitani,K.Tatsumi,Y.Inaguma,J.Power Sources 196(2011)6934-6938.
    [49]M.Sathiya,G.Rousse,K.Ramesha,C.P.Laisa,H.Vezin,M.T.Sougrati,M.L.Doublet,D.Foix,D.Gonbeau,W.Walker,A.S.Prakash,M.Ben Hassine,L.Dupont,J.M.Tarascon,Nat.Mater.12(2013)827-835.
    [50]A.K.Kalathil,P.Arunkumar,D.H.Kim,J.-W.Lee,W.B.Im,ACS Appl.Mater.Interfaces 7(2015)7118-7128.
    [51]M.Sathiya,A.M.Abakumov,D.Foix,G.Rousse,K.Ramesha,M.Saubanere,M.L.Doublet,H.Vezin,C.P.Laisa,A.S.Prakash,D.Gonbeau,G.VanTendeloo,J.M.Tarascon,Nat.Mater.14(2015)230-238.
    [52]E.McCalla,A.M.Abakumov,M.Saubanere,D.Foix,E.J.Berg,G.Rousse,M.-L.Doublet,D.Gonbeau,P.Novak,G.Van Tendeloo,R.Dominko,J.-M.Tarascon,Science 350(2015)1516-1521.
    [53]L.McCusker,R.Von Dreele,D.Cox,D.Louer,P.Scardi,J.Appl.Crystallogr.32(1999)36-50.
    [54]J.Rodriguez-Carvajal,in:Proceedings of the Satellite meeting on powder diffraction of the XV congress of the IUCr,Toulouse,France:[sn],1990.
    [55]R.D.Shannon,Acta Crystallogr.Sect.A 32(1976)751-767.
    [56]J.M.Paulsen,C.L.Thomas,J.R.Dahn,J.Electrochem.Soc.146(1999)3560-3565.
    [57]J.M.Paulsen,C.L.Thomas,J.R.Dahn,J.Electrochem.Soc.147(2000)861-868.
    [58]K.M.Shaju,G.V.S.Rao,B.V.R.Chowdari,Electrochem.Commun.4(2002)633-638.
    [59]M.Takahashi,S.Tobishima,K.Takei,Y.Sakurai,Solid State Ionics 148(2002)283-289.
    [60]S.S.Zhang,K.Xu,T.R.Jow,Electrochim.Acta 49(2004)1057-1061.
    [61]J.Liu,A.Manthiram,Chem.Mater.21(2009)1695-1707.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.