振荡水柱驱动压电发电理论建模分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:MATHEMATICAL THEORY MODEL ANALYSIS OF PIEZOELECTRIC POWER GENERATION DRIVEN BY OSCILLATING WATER COLUMN
  • 作者:杜小振 ; 张燕 ; 文傲 ; 朱文斗 ; 于红
  • 英文作者:Du Xiaozhen;Zhang Yan;Wen Ao;Zhu Wendou;Yu Hong;College of Mechanical and Electronic Engineering,Shandong University of Science and Technology;College of Science,China University of Petroleum;
  • 关键词:波浪能 ; 振荡水柱 ; 压电发电 ; 微电源 ; 气室压强
  • 英文关键词:wave energy;;oscillating water column(OWC);;piezoelectric generator;;micro power;;chamber air pressure
  • 中文刊名:TYLX
  • 英文刊名:Acta Energiae Solaris Sinica
  • 机构:山东科技大学机械电子工程学院;中国石油大学(华东)理学院;
  • 出版日期:2019-05-28
  • 出版单位:太阳能学报
  • 年:2019
  • 期:v.40
  • 基金:山东省自然科学基金(ZR2016EEM23);; 国家自然基金(51105234);; 中国博士后科学基金(2015M582113)
  • 语种:中文;
  • 页:TYLX201905002
  • 页数:9
  • CN:05
  • ISSN:11-2082/TK
  • 分类号:12-20
摘要
振荡水柱(OWC)驱动压电发电装置采用振荡水柱波浪能转换装置与复合圆形压电陶瓷片结合,主要由箱体、振荡水柱、压缩空气柱和复合圆形压电陶瓷片组成。首先基于线性波理论,采用三维Green函数法建立气室内水气动力学性能的空气压强理论计算模型,利用多维切比雪夫多项式求解气室内压强;其次根据压电陶瓷发电理论,结合材料力学的基础理论,建立圆形压电振子受压强作用的数学模型,进行受力分析和变形分析,得到复合压电振子的能量输出。振荡水柱驱动压电发电理论建模,实现数值模拟波浪能向电能的转换,为海面无线传感网络节点、小功率设备等持续供电装置的设计提供理论依据。
        The OWC piezoelectric generation device consists of a chamber with one opening to the ocean wave below the sea level,the oscillating water column,the compressed air column and the composite circular piezoelectric ceramic oscillator membrane. The theoretical calculation model of the air pressure is derived using the three-dimensional Green function method and solved with multidimensional Chebyshev polynomial model. According to the theory of piezoelectric and the material mechanics theory,the mathematical model of circular piezoelectric vibrator under pressure is established. Then the intrinsic output power characteristics are simulated in detail. The optimization of the piezoelectric OWC fundamental modes is discussed as well. The theory system reviewed provides a theoretical basis of ocean wave energy harvesting and can be utilized as a guideline for the new generator design and improving output performance.These findings from a practical research may lead to the realization of functional and self-powered devices for wireless sensors using low-frequency mechanical movements driven by ocean wave energy.
引文
[1]姚斐,褚金奎,韩冰峰,等.阻尼板式波浪压电换能装置研究[J].太阳能学报,2014,35(8):1387-1393.[1]Yao Fei,Chu Jinkui,Han Bingfeng,et al.Research of wave energy piezoelectric generator with reaction plate[J].Acta Energiae Solaris Sinica,2014,35(8):1387-1393.
    [2]Xie Xiangdong,Wang Quan,Wu Nan.Energy harvesting from transverse ocean waves by a piezoelectric plate[J].International Journal of Engineering Science,2014,81:41-48.
    [3]Emesto G M.Design of a piezoelectric energy harvesting system for shallow ocean waves[D].York:Rensselare Polytechnic Institute,2013.
    [4]Woo M S,Baek K H,Kim J H,et al.Relationship between current and impedance in piezoelectric energy harvesting system for water waves[J].Journal of Electroceramics,2015,34(2-3):180-184.
    [5]Mirab H,Fathi R,Jahangiri V,et al.Energy harvesting sea waves with consideration of airy and JONSWAPtheory and optimization of energy harvester parameters[J].Journal of Marine Science and Application,2015,14(4):440-449.
    [6]Mutsuda Hidemi,Otake Motoki,Morisaki Kenichi,et al.Wave energy converter using a compressed type of flexible piezoelectric device[J].Processing of Coastal engineering,2014,70(2):1316-1320.
    [7]Wilbert R,Sundar V,Sannasiraj S.Wave interaction with a double chamber oscillating water column device[J].International Journal of Ocean&Climate Systems,2013,4(1):21-40.
    [8]韩凌.应用时域格林函数方法模拟有限水深中波浪对结构物的作用[D].大连:大连理工大学,2005.[8]Han Ling.Numerical simulation of wave action on structures using the time-domain green function[D].Dalian:Dalian University of Technology,2005.
    [9]Beck R F,Liapis S.Transient motions of floating bodies at zero forward speed[J].Journal of Ship Research,1987,31(3):164-176.
    [10]陶尧森,沈志东,费乃振.三维振荡水柱波能转换装置的流体动力计算[J].水动力学研究与进展,1988,3(4):85-96.[10]Tao Yaosen,Shen Zhidong,Fei Naizhen.The calculation of the hydrodynamics for 3-D OWC wave energy absorber[J].Advances in Hydrodynamics,1998,3(4):85-96.
    [11]李远林,张健,陈加菁.振荡水柱港池系统的三维理论方法[J].华南理工大学学报:自然科学版,1989,17(4):86-98.[11]Li Yuanlin,Zhang Jian,Chen Jiajing.A 3-D theoretical technique of OWC with a harbour system[J].Journal of South China University of Technology:Natural Science,1989,17(4):86-98.
    [12]Wehausen J V,Laitone E V.Surface waves[M].Berlin:Handbuch der Physik,1960,30-95.
    [13]Newman J N.The approximation of free-surface green functions[A].Wave Asymptotic,Proceeding of Fritz Ursell Retirement Meeting[C],Londo:Cambridge University Press,1990,49:107-135.
    [14]戴愚志,余建星,郭海涛.时域有限水深格林函数及其导数的数值计算[J].船舶力学,2006,10(1):15-21.[14]Dai Yuzhi,Yu Jianxing,Guo Haitao.Approximation of time-domain Green function for finite water depth and its derivatives[J].Journal of Ship Mechanics,2006,10(1):15-21.
    [15]周庆标,张纲,朱林生.自由表面波Green函数及其导数的快速算法[J].计算物理,1999,16(2):113-120.[15]Zhou Qingbiao,Zhang Gang,Zhu Linsheng.The fast calculation of free-surface wave Green function and its derivatives[J].Chinese Journal of Computational Physics,1992,16(2):113-120.
    [16]DelauréY M C,Lewis A.3D hydrodynamic modelling of fixed oscillating water column wave power plant by a boundary element methods[J].Ocean Engineering,2003,30(3):309-330.
    [17]焦建辉.OWC发电装置二次能量转换系统的优化设计研究[D].青岛:中国海洋大学,2011.[17]Jiao Jianhui.Study on the design and optimize of the second energy conversion of caisson breakwater as OWC[D].Qingdao:Ocean University of China,2011.
    [18]Roundy S,Leland E S,Baker J,et al.Improving power output for vibration-based energy scavengers[J].IEEEPervasive Computing,2005,4(1):28-36.
    [19]李攀峰.基于压电能量采集的无线传感网络节点供能技术的研究[D].杭州:杭州电子科技大学,2013.[19]Li Panfeng.Research on energy supply for wireless sensor network node based on piezoelectric energy harvesting technology[D].Hangzhou:Hangzhou Dianzi University,2013.
    [20]王淑云,阚君武,王鸿云,等.液压流体吸振器用圆形压电发电装置的建模与性能分析[J].振动与冲击,2012,31(16):177-182.[20]Wang Shuyun,Kan Junwu,Wang Hongyun,et al.Modeling and analysis of a circular PZT energygenerator used inhydrualic liquid absorber[J].Journal of Vibration and Shock,2012,31(16):177-182.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.