主导长江口鱼类群落物种时间共存格局的环境过滤机制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Environmental filtering mechanism controlling the species temporal coexistence pattern for fish communities in Changjiang Estuary
  • 作者:史赟荣 ; 晁敏 ; 沈新强
  • 英文作者:SHI Yun-rong;CHAO Min;SHEN Xin-qiang;East China Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences;
  • 关键词:海洋生物学 ; 环境过滤 ; 鱼类群落 ; 时间共存 ; 零模型 ; GAMs ; 长江口
  • 英文关键词:marine biology;;environmental filtering;;fish assemblages;;temporal coexistence;;null models;;GAMs;;Changjiang Estuary
  • 中文刊名:TWHX
  • 英文刊名:Journal of Applied Oceanography
  • 机构:中国水产科学研究院东海水产研究所;
  • 出版日期:2018-11-15
  • 出版单位:应用海洋学学报
  • 年:2018
  • 期:v.37;No.142
  • 基金:中国水产科学研究院东海水产研究所基本科研业务费资助项目(2014T11);; 国家973重点基础研究发展计划资助项目(2010CB429005)
  • 语种:中文;
  • 页:TWHX201804008
  • 页数:9
  • CN:04
  • ISSN:35-1319/P
  • 分类号:82-90
摘要
了解生物群落中物种共存机制是群落生态学研究的重要组成部分.鉴于河口鱼类群落结构与温盐等理化因子密切相关,同时多数鱼类产卵、育幼在时间上具有同步性(主要在春夏季发生),因此环境过滤机制可能是促使河口鱼类时间上共存的主要机制.为证实该假设,本研究以长江口鱼类群落为例,利用广义可加非线性模型(GAMs)分析其时间生态位及鱼类与环境因子的关系,同时基于零模型(null models)从生态位利用的角度阐述河口鱼类群落时间上的共存机制.结果表明:鱼类物种间实测生态位大于预期值,揭示出环境过滤机制是促使鱼类时间上共存的主要机制;多数鱼类物种与非生物环境因子关系拟合较好,说明未知因素(如物种间的竞争作用等机制)对其分布影响权重较小.上述结果支持环境过滤学说是长江口鱼类物种时间共存格局的主导机制.
        Understanding mechanisms structuring coexistence of species within biological communities is a central issue of community ecology. It is widely recognized that structure of fish community is mainly regulated by abiotic factors( e. g.,salinity,temperature),as well as most of fish species co-occurred temporally in estuaries,e. g.,spawning and nursing mainly during spring and summer. Thus,we hypothesize that environmental filtering is an important force promoting the coexistence of fish species in those environments. Aiming to examine such hypothesis,we analyzed the temporal niche overlaps among fish species within assemblages using null models,and relationships based on GAMs between fish species and abiotic factors of Changjiang Estuary. Results of null models and GAMs are as follows. Firstly,observed values of niche overlaps are more than expected ones. Secondly,fish assemblages were expressed well by abiotic variables,which together suggesting that environmental filtering mecha-nism plays a critical role but other unmeasured influences( e. g.,inter-specific competitions) may also promote temporal distribution of fish species. Thus,the present study supports the theory of environmental filtering.
引文
[1] GAVILANEZ M M,STEVENS R D. Role of environmental,historical and spatial processes in the structure of neotropical primate communities:Contrasting taxonomic and phylogenetic perspectives[J]. Global Ecology and Biogeography,2012,10:1-13.
    [2] HUBBELL S P. The unified theory of biodiversity and biogegraphy[M]. Princeton:Princeton University Press,2001.
    [3] MACARTHUR R,LEVINS R. Limiting similarity convergence and divergence of coexisting species[J]. American Naturalist,1967,101:377-387.
    [4] RAY J C,SUNQUIST M E. Trophic relations in a community of African rainforest carnivores[J]. Oecologia,2001,127:395-408.
    [5] MOUILLOT D,NORMAN W H,MASON J,et al. Is the abundance of species determined by their functional traits? A newmethod with a test using plant communities[J]. Oecologia,2007,15:729-737.
    [6] CARNICER J,BROTONS L,SOL D,et al. Random sampling,abundance-extinction dynamics and niche-filtering immigration constraints explain the generation of species richness gradients[J]. Global Ecology and Biogeography,2008,17:352-362.
    [7] MOUCHET M A,VILLEGER S,MASON N W H,et al. Functional diversity measures:An overview of their redundancy and their ability to discriminate community assembly rules[J]. Functional Ecology,2010,24:867-876.
    [8] FOWLER D,LESSARD J P,SANDERS N J. Niche filtering rather than partitioning shapes the structure of temperate forest ant communities[J]. Journal of Animal Ecology,2014,83:943-952.
    [9] PIANKA E R. Niche overlap and diffuse competition[J]. Proceedings of the National Academy of Sciences,1974,71:2 141-2 145.
    [10] GOTELLI N J,ENTSMINGER G L. Eco Sim:Null models software for ecology. Version 7. 0. Acquired Intelligence Inc. and Kesey-Bear[EB/OL].[2015-11-21]. http://homepages. together. net/~gentsmin/ecosim. htm.
    [11] GOTELLI N J,GRAVES G R,RAHBEK C. Macroecological signals of species interactions in the Danish avifauna[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107:5 030-5 035.
    [12] MALAVASI S,FIORIN R,FRANCO A,et al. Fish assemblages of Venice Lagoon shallow waters:an analysis based on species,families and functional guilds[J]. Journal of Marine System,2004,51:19-31.
    [13] MARTINO E J,ABLE K W. Fish assemblages across the marine to low salinity transition zone of a temperate estuary[J]. Estuarine,Coastal and Shelf Science,2003,56:969-987.
    [14] MACI S,BASSET A. Composition,structural characteristics and temporal patterns of fish assemblages in non-tidal Mediterranean lagoons:A case study[J]. Estuarine,Coastal and Shelf Science,2009,83:602-612.
    [15]史赟荣,晁敏,全为民,等.长江口鱼类群落的多样性分析[J].中国水产科学,2012,19(6):169-176.
    [16] AKIN S,WINEMILLER K O,GELWICK F P. Seasonal and spatial variations in fish and macrocrustacean assemblage structure in Mad Island Marsh estuary,Texas[J]. Estuarine,Coastal and Shelf Science,2003,57:269-282.
    [17] SIMIER M,LAURENT C,ECOUTIN J M,et al. The Gambia River estuary:A reference point for estuarine fish assemblages studies in West Africa[J]. Estuarine Coastal and Shelf Science,2006,69:615-628.
    [18] SHI Y R,CHAO M,QUAN W M,et al. Spatial and seasonal variations in fish assemblages of the Yangtze River estuary[J].Journal of Applied Ichthyology,2014,30:844-852.
    [19] BELLWOOD D R,WAINWRIGHT P C,FULTON C J,et al. Functional versatility supports coral reef biodiversity[J]. Proceedings of the Royal Society of London,Series B,Biological Sciences,2006,273:101-107.
    [20]庄平,王幼槐,李圣法,等.长江口鱼类[M].上海:上海科学技术出版社,2006.
    [21]国家海洋局.海洋调查规范第2部分海洋水文观测:GB/T 12763. 2-2007[S].北京:海洋出版社,2007.
    [22]长江水利委员会.水位管理系统[EB/OL].[2013-12-10]. http://yu-zhu. vicp. net/yzhshwgl. aspx.
    [23] GOTELLI N J,GRAVES G R. Null models in ecology[M]. Washington:Smithsonian Institution Press,1996.
    [24] ULRICH W,GOTELLI N J. Null model analysis of species associations using abundance data[J]. Ecology,2010,91:3 384-3 397.
    [25]史赟荣,沈新强,王云龙.海湾鱼类群落物种共存机制:以湄洲湾为例[J].中国水产科学,2016,23(1):169-176.
    [26] YEE T W,MITCHELL N D. Generalized additive models in plant ecology[J]. Journal of Vegetation Science,1991,2:587-602.
    [27] BURNHAM K P,ANDERSON D R. Model selection and multi-model inference:A practical information-theoretic approach[M]. New York:Springer-Verlag,2002.
    [28]牛克昌,刘怿宁,沈泽昊,等.群落构建的中性理论和生态位理论[J].生物多样性,2009,17(6):579-593.
    [29] BECK M W,HECK K L,ABLE K W. A better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas[J]. BioScience,2001,51:633-641.
    [30]史赟荣,晁敏,沈新强.长江口张网鱼类群落结构特征及月相变化[J].海洋学报,2014,36(2):81-92.
    [31] HOFER U,BERSIER L F,BORCARD D. Relating niche and spatial overlap at the community level[J]. Oikos,2004,106:366-376.
    [32] SCHOENER T W. Resource partitioning in ecological communities[J]. Science,1974,185:27-39.
    [33] VIERIRA E M,PORT D. Niche overlap and resource partitioning between two sympatric fox species in southern Brazilian[J].Journal of Zoology,2007,272:57-63.
    [34]朱国平,朱小艳,徐怡瑛,等.基于GAM模型分析夏秋季南奥克尼群岛南极磷虾渔场时空分布及与环境因子之间的关系[J].极地研究,2012,24(3):266-273.
    [35]唐浩,许柳雄,陈新军,等.基于GAM模型研究时空及环境因子对中西太平洋鲣鱼渔场的影响[J].海洋环境科学,2013,32(4):518-522.
    [36]范永超,戴小杰,朱江峰,等.南太平洋长鳍金枪鱼延绳钓渔业CPUE标准化[J].海洋湖沼通报,2017(1):122-132.
    [37]逄志伟,李显森,朱建成,等.大西洋中部海域竹荚鱼中心渔场的时空变化及其影响因素[J].中国农学通报,2017,33(31):153-159.
    [38]戴澍蔚,唐峰华,樊伟,等.北太平洋公海日本鲭资源分布及其渔场环境特征[J].海洋渔业,2017,39(4):370-382.
    [39]李敏,李增光,徐宾铎,等.时空和环境因子对海州湾方氏云鳚资源丰度分布的影响[J].中国水产科学,2015,22(4):812-819.
    [40]李敏,徐宾铎,麻秋云,等.时空及环境因子对黄河口及邻近水域斑鰶资源丰度的影响[J].中国水产科学,2017,24(5):963-969.
    [41]陈新军,田思泉.西北太平洋柔鱼资源丰度时空分布的GAM模型分析[J].集美大学学报(自然科学版),2006,11(4):295-300.
    [42]赵静,章守宇,汪振华,等.基于GAM模型的鱼类群落多样性分布及影响因素[J].生态学杂志,2013,32(12):3 226-3 235.
    [43]线薇薇,刘瑞玉,罗秉征.三峡水库蓄水前长江口生态与环境[J].长江流域资源与环境,2004,13(2):119-123.
    [44] WHITFIELD A K. Fish species diversity in southern African estuarine systems:An evolutionary perspective[J]. Environmental Biology of Fish,1994,40:37-48.
    [45]田明诚,沈友石,孙宝铃.长江口及其邻近海区鱼类区系研究[J].海洋科学集刊,1992,33(3):265-280.
    [46] LIU H B,JIANG T,HUANG H H,et al. Estuarine dependency in Collichthys lucidus of the Yangtze River Estuary as revealed by the environmental signature of otolith strontium and calcium[J]. Environmental Biology of Fishes,2015,98(1):165-172.
    [47] TER MORSHUIZEN L D,WHITFIELD A K,PATERSON A W. Distribution patterns of fishes in an eastern Cape Estuary and river with particular emphasis on the ebb and flow region[J]. Transactions of the South African Philosophical Society,1997,51:257-280.
    [48] SELLESLAGH J,AMARA R. Environmental factors structuringsh composition and assemblages in a small macrotidal estuary(eastern English Channel)[J]. Estuarine,Coastal and Shelf Science,2008,79:507-517.
    [49] LAFFAILLE P,FEUNTEUN E,LEFEUVRE J C,et al. Composition of fish communities in a European macrotidal salt marsh(the Moint Saint-Michel bay,France)[J]. Estuarine,Coastal and Shelf Science,2000,51:429-438.
    [50]沈国英,施并章.海洋生态学[M].北京:科学出版社,2002:95-127.
    [51]陈亚瞿,朱启琴.东海带鱼摄食习性、饵料基础及与渔场关系[J].水产学报,1984,8(2):135-145.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.