基于周期性栅结构硬薄板的球体粒子声捕获
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Acoustic Capture of Spherical Particles Based on the Periodic Grid Structure
  • 作者:欧阳文乐 ; 邹峰 ; 何海龙 ; 何兆剑 ; 邓科 ; 赵鹤平
  • 英文作者:OUYANG Wenle;ZOU Feng;HE Hailong;HE Zhaojian;DENG Ke;ZHAO Heping;College of Physics and Mechanical & Electrical Engineering,Jishou University;
  • 关键词:周期性栅结构 ; 硬薄板 ; 球体粒子 ; 声捕获
  • 英文关键词:periodic grid structure;;stiff plate;;spherical particles;;sound capture
  • 中文刊名:JSDN
  • 英文刊名:Journal of Jishou University(Natural Sciences Edition)
  • 机构:吉首大学物理与机电工程学院;
  • 出版日期:2019-01-25
  • 出版单位:吉首大学学报(自然科学版)
  • 年:2019
  • 期:v.40;No.143
  • 基金:国家自然科学基金资助项目(11564012,11564013,11764016,11464012);; 湖南省自然科学基金资助项目(2016JJ2100,2018JJ3412);; 湖南省教育厅科研项目(16A170);; 吉首大学校级课题(JDY17029)
  • 语种:中文;
  • 页:JSDN201901011
  • 页数:5
  • CN:01
  • ISSN:43-1253/N
  • 分类号:49-52+57
摘要
基于周期性栅结构修饰的声学硬薄板,研究了位于结构板上方的黄铜球体粒子所受到的声辐射力、粒子位置和粒子尺寸对声辐射力的影响.仿真结果表明,当外部声波入射到该非开口硬薄板体系,铜粒子与结构板的距离小于0.5d时,铜粒子将受到声拉力而被捕获,声辐射力密度随粒子尺寸的减小而增大.这种违反直觉的声拉力源于周期性结构硬薄板中无泄漏兰姆波模式所引起的集体激励.
        We investigated the acoustic radiation force(ARF)acting on a spherical brass particle near a stiff plate without openings but patterned with periodic stubs.Simulation results showed that the particle near plate which the distance is less than 0.5 dcan be pulled backward when external acoustic waves impacted into the system.And the ARF will decrease when the size of the particle increases.We also demonstrated that the dramatic pulling force originates from the collective excitation of nonleaky flexural lamb modes in the periodically structured solid plate.
引文
[1]BORGNIS F E.Acoustic Radiation Pressure of Plane Compressional Waves[J].Review of Modern Physics,1953,25(3):653-664.
    [2]HASEGAWA T,HINO Y,ANNOU A,et al.Acoustic Radiation Pressure Acting on Spherical and Cylindrical Shells[J].J.Acoust.Soc.Am.,1993,93(1):154-161.
    [3]DING X,PENG Z,LIN S C S,et al.Cell Separation Using Tilted-Angle Standing Surface Acoustic Waves[J].Proceedings of the National Academy of Sciences,2014,111(36):12 992-12 997.
    [4]CHAN C Y,HUANG P H,GUO F,et al.Accelerating Drug Discovery via Organs-on-Chips[J].Lab.on a Chip.,2013,13(24):4 697-4 710.
    [5]ZHANG L,MARSTON P L.Angular Momentum Flux of Nonparaxial Acoustic Vortex Beams and Torques on Axisymmetric Objects[J].Physical Review E,2011,84(6):Article ID 065 601.
    [6]BARESCH D,THOMAS J L,MARCHIANO R.Three-Dimensional Acoustic Radiation Force on an Arbitrarily Located Elastic Sphere[J].The Journal of the Acoustical Society of America,2013,133(1):25-36.
    [7]XU S,QIU C,LIU Z.Transversally Stable Acoustic Pulling Force Produced by Two Crossed Plane Waves[J].EPL(Europhysics Letters),2012,99(4):Article ID 44 003.
    [8]DEMORE C E M,DAHL P M,YANG Z,et al.Acoustic Tractor Beam[J].Physical Review Letters,2014,112(17):Article ID 174 302.
    [9]FLEURY R,SOUNAS D L,SIECK C F,et al.Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator[J].Science,2014,343(6 170):516-519.
    [10]LI J,LIU Z,QIU C.Negative Refraction Imaging of Acoustic Waves by a Two-Dimensional Three-Component Phononic Crystal[J].Physical Review B,2006,73(5):Article ID 054 302.
    [11]CHRISTENSEN J,FEMANDEZ-DOMINGUEZ A I,DE LEON-PEREZ F,et al.Collimation of Sound Assisted by Acoustic Surface Waves[J].Nature Physics,2007,3(12):851-852.
    [12]LI B,DENG K,ZHAO H.Acoustic Guiding and Subwavelength Imaging with Sharp Bending by Sonic Crystal[J].Applied Physics Letters,2011,99(5):Article ID 051 908.
    [13]LI J,WU F,ZHONG H,et al.Acoustic Beam Splitting in Two-Dimensional Phononic Crystals Using Self-Collimation Effect[J].Journal of Applied Physics,2015,118(14):Article ID 144 903.
    [14]HE Z,JIA H,QIU C,et al.Acoustic Transmission Enhancement Through a Periodically Structured Stiff Plate Without any Opening[J].Physical Review Letters,2010,105(7):Article ID 074 301.
    [15]HE Z,QIU C,CHENG L,et al.Negative-Dynamic-Mass Response Without Localized Resonance[J].EPL(Europhysics Letters),2010,91(5):Article ID 54 004.
    [16]YE Y,KE M,LI C,et al.Acoustic Lens:A Thin Plate with Quasi-Periodic Array of Holes[J].Solid State Communications,2014,185:35-40.
    [17]XU S,QIU C,KE M,et al.Tunable Enhancement of the Acoustic Radiation Pressure Acting on a Rigid Wall via Attaching a Metamaterial Slab[J].EPL(Europhysics Letters),2014,105(6):Article ID 64 004.
    [18]QIU C,XU S,KE M,et al.Acoustically Induced Strong Interaction Between Two Periodically Patterned Elastic Plates[J].Physical Review B,2014,90(9):Article ID 094 109.
    [19]FAN X,QIU C,ZHANG S,et al.Highly Asymmetric Interaction Forces Induced by Acoustic Waves in Coupled Plate Structures[J].Journal of Applied Physics,2015,118(24):Article ID 244 506.
    [20]LU S,ZHANG X,WU F,et al.Excited and Enhanced Twinborn Acoustic-Induced Mutual Forces in Oblique Grating Structures[J].Journal of Applied Physics,2016,120(4):Article ID 045 102.
    [21]HE H,OUYANG S,HE Z,et al.Broadband Acoustic Trapping of a Particle by a Soft Plate with a Periodic Deep Grating[J].Journal of Applied Physics,2015,117(16):Article ID 164 504.
    [22]CAI F,HE Z,LIU Z,et al.Acoustic Trapping of Particle by a Periodically Structured Stiff Plate[J].Applied Physics Letters,2011,99(25):Article ID 253 505.
    [23]LI F,CAI F,LIU Z,et al.Phononic-Crystal-Based Acoustic Sieve for Tunable Manipulations of Particles by a Highly Localized Radiation Force[J].Physical Review Applied,2014,1(5):Article ID 051 001.
    [24]XIA X,YANG Q,LI H,et al.Acoustically Driven Particle Delivery Assisted by a Graded Grating Plate[J].Applied Physics Letters,2017,111(3):Article ID 031 903.
    [25]WANG T,KE M,XU S,et al.Dexterous Acoustic Trapping and Patterning of Particles Assisted by Phononic Crystal Plate[J].Applied Physics Letters,2015,106(16):Article ID 163 504.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.