IEEE 802.11ah中的优化限制接入窗口机制(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimized Restricted Access Window Mechanism in IEEE 802.11ah
  • 作者:苏寒松 ; 孙占鹏 ; 刘高华 ; 闫淑霞
  • 英文作者:Su Hansong;Sun Zhanpeng;Liu Gaohua;Yan Shuxia;School of Electronic Information Engineering,Tianjin University;School of Electronics and Information Engineering,Tianjin Polytechnic University;
  • 关键词:限制接入窗口 ; IEEE ; 802.11ah ; 阈值 ; 最佳RAW组大小 ; 大量终端
  • 英文关键词:RAW;;IEEE 802.11ah;;threshold;;optimal RAW group size;;large number of stations
  • 中文刊名:NKDZ
  • 英文刊名:Acta Scientiarum Naturalium Universitatis Nankaiensis
  • 机构:天津大学电子信息工程学院;天津工业大学电子信息与工程学院;
  • 出版日期:2019-04-15
  • 出版单位:南开大学学报(自然科学版)
  • 年:2019
  • 期:v.52
  • 基金:Support by the National Natural Science Foundation of China(61471260);; the Natural Science Foundation of Tianjin(16JCYBJC16000)
  • 语种:英文;
  • 页:NKDZ201902005
  • 页数:9
  • CN:02
  • ISSN:12-1105/N
  • 分类号:22-30
摘要
限制接入窗口(RAW)机制是IEEE 802.11ah标准中的媒体接入控制(MAC)的增强.基于原始RAW机制、阈值和最佳RAW组大小决策,提出了1种优化的RAW方案来提高重负载网络的性能,并进一步突出了RAW的优势.与传统的DCF方法相比,所提出的方案在具有大量终端的饱和场景中提高了网络性能.仿真结果表明所提出的方案在吞吐量、功耗和公平性方面具有优势.因此,该方案可以在实际的802.11ah中采用以提高网络性能.
        Restricted Access Window(RAW) mechanism is a significant Medium Access Control(MAC) enhancement in IEEE 802.11 ah standard. An optimized RAW scheme is proposed to improve the performance of heavy-loaded networks. Based on the original RAW mechanism, threshold and optimal RAW group size decision was introduced into the proposed scheme, which further highlighted the advantage of RAW. Compared to traditional DCF method, the proposed scheme improves the network performance in saturated scenario with large number of stations. Simulation results confirmed the advantages of proposed scheme in throughput, power consumption and fairness. This scheme can therefore be adopted in practical802.11 ah use cases to improve the network performance.
引文
1 Whitmore A, Agarwal A, Xu L D. The internet of things—A survey of topics and trends[J]. Information Systems Frontiers, 2015, 17(2):261-274.
    2 Bonino D, Alizo M T D, Alapetite A, et al. Almanac:internet of things for smart cities[C]//IEEE:IEEE International Conference on Future Internet of Things and Cloud, August 24-26, 2015, Rome, Italy. Piscataway,NJ:IEEE, 2015:309-316.
    3 Zhu Q, Wang R, Chen Q, et al. IOT Gateway:bridgingwireless sensor networks into internet of things[C]//IEEE:IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, December 17-20, 2010,Shanghai. Piscataway, NJ:IEEE, 2010:347-352.
    4 IEEE. Std 802.19.1-2014 IEEE standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements-part 11:wireless LAN medium access control(MAC)and physical layer(PHY)specifications amendment 6:sub 1 GHz license exempt operation[S]. Piscataway, NJ:IEEE, 2014.
    5 Aust S, Prasad R V, Niemegeers I G M M. Outdoor long-range wlans:a lesson for IEEE 802.11ah[J]. IEEE Communications Surveys&Tutorials, 2015, 17(3):1 761-1 775.
    6 Liu R P, Sutton G J, Collings I B. Power save with offset listen interval for IEEE 802.11ah smart grid communications[C]//IEEE International Conference on Communications, June 9-13, 2013, Budapest, Hungray. Piscataway, NJ:IEEE, 2013:4 488-4 492.
    7 Gao W, Li Q. Wakeup scheduling for energy-efficient communication in opportunistic mobile networks[C]//2013Proceedings IEEE INFOCOM, April 14-19, 2013, Turin, Italy. Piscataway, NJ:IEEE, 2013:2 058-2 066.
    8 Kumar S, Lim H C, Kim H W. Hierarchical MAC protocol with multi-channel allocation for enhancing IEEE802 .11ah relay networks[C]//IEEE:International Wireless Communications and Mobile Computing Conference,August 24-28, 2015, Dubrovnik, Croatia. Piscataway, NJ:IEEE, 2015:257-262.
    9 Zhou Y, Wang H, Zheng S, et al. Advances in IEEE 802.11ah standardization for machine-type communications in sub-1GHz WLAN[C]//IEEE International Conference on Communications Workshops, June 9-13,2013, Budapest, Hungray. Piscataway, NJ:IEEE, 2013:1 269-1 273.
    10 Aziz A A, Sekercioglu Y A, Fitzpatrick P, et al. A survey on distributed topology control techniques for extending the lifetime of battery powered wireless sensor networks[J]. IEEE Communications Surveys&Tutorials,2013, 15(1):121-144.
    11 Lei X, Rhee S H. Improving the IEEE 802.11 power-saving mechanism in the presence of hidden terminals[J].EURASIP Journal on Wireless Communications and Networking, 2016(1):1-10.
    12 Jung E S, Vaidya N H Anita, Singh R, Priyanka, et al. Performance analysis of IEEE 802.11 in the presence of hidden terminal for wireless networks[M]//Anita, Singh R, Priyanka, et al. Computational Intelligence in Data Mining-Volume 1. India:Springer, 2015:665-676.
    13 Qutab-Ud-Din M, Hazmi A, Badihi B, et al. Performance analysis of IoT-enabling IEEE 802.11ah technology and its RAW mechanism with non-cross slot boundary holding schemes[C]//2015 IEEE 16th International Symposium on a World of Wireless, Mobile and Multimedia Networks, June 23-26, 2015, CA, USA. Piscataway,NJ:IEEE, 2015:1-6.
    14 Zheng L, Ni M, Cai L, et al. Performance analysis of group-synchronized DCF for dense IEEE 802.11 networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(11):6 180-6 192.
    15 Raeesi O, Pirskanen J, Hazmi A, et al. Performance enhancement and evaluation of IEEE 802.11ah multi-access point network using restricted access window mechanism[C]//IEEE International Conference on Distributed Computing in Sensor Systems, June 30-July 3, 2014, Madrid, Spain. Piscataway, NJ:IEEE, 2014:287-293.
    16 Raeesi O, Pirskanen J, Hazmi A, et al. Performance evaluation of IEEE 802.11ah and its restricted access window mechanism[C]//IEEE International Conference on Communications Workshops, June 10-14, 2014, Sydney,Australia. Piscataway, NJ:IEEE, 2014:460-466.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.