GhMAPK参与调控棉花对链格孢的抗性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Regulation of cotton resistance to Alternaria alternata mediated by GhMAPK
  • 作者:高环 ; 翟伟卜 ; 孟菁 ; 史金艳 ; 张文蔚 ; 齐放军
  • 英文作者:GAO Huan;ZHAI Weibo;MENG Jing;SHI Jinyan;ZHANG Wenwei;QI Fangjun;State Key Laboratory for Biology of Plant Diseases and Insect Pests,Institute of Plant Protection,Chinese Academy of Agricultural Sciences;
  • 关键词:棉花 ; 丝裂原活化蛋白激酶 ; 病毒诱导基因沉默 ; 链格孢 ; 抗病性
  • 英文关键词:cotton;;mitogen-activated protein kinase;;virus induced gene silencing;;Alternaria alternata;;disease resistance
  • 中文刊名:ZWBH
  • 英文刊名:Plant Protection
  • 机构:中国农业科学院植物保护研究所植物病虫害生物学国家重点实验室;
  • 出版日期:2019-04-04
  • 出版单位:植物保护
  • 年:2019
  • 期:v.45;No.259
  • 基金:国家自然科学基金(31371898)
  • 语种:中文;
  • 页:ZWBH201902007
  • 页数:11
  • CN:02
  • ISSN:11-1982/S
  • 分类号:40-50
摘要
丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)级联途径,由三种级次磷酸化的MAPKKK (MAPK kinase kinase)、MAPKK (MAPK kinase)和MAPK蛋白激酶组成,广泛参与植物防御反应的调控。本文利用已发布的陆地棉Gossypium hirsutum L.全基因组数据,对其中的MAPK家族基因编码序列进行多序列比对和聚类分析。结果显示,53个GhMAPK大都含有植物MAPK保守的TXY基序,并且能够聚集到AtMAPK的A、B、C、D四个族中。进而利用病毒诱导的基因沉默(virus-induced gene silencing, VIGS)技术,研究GhMAPK是否参与调控棉花对链格孢Alternaria alternata抗性。链格孢是引起棉花轮纹斑病并导致棉花早衰的主要病原真菌。结果发现,沉默GhMAPK3、GhMAPK7、GhMAPK9及GhMAPK19的棉花植株,抗病性显著下降,表明这4种GhMAPK正调控棉花对链格孢的抗性。进一步利用靶向性沉默策略,验证这4种GhMAPK中各同源基因对棉花链格孢抗性的调控作用。结果显示,仅同源基因GhMAPK3b、GhMAPK7b、GhMAPK7c、GhMAPK9a、GhMAPK9b、GhMAPK19b和GhMAPK19c参与正调控棉花对链格孢的抗性,而同源基因GhMAPK3a、GhMAPK7a、GhMAPK7d和GhMAPK19a并不调控棉花对链格孢的抗性。
        Mitogen-activated protein kinase(MAPK) cascades, which are comprised of the hierarchically phosphorylated MAPKKK(mitogen-activated protein kinase kinase kinase), MAPKK(mitogen-activated protein kinase kinase) and MAPK, normally involved in plant defense signal transduction and regulation processes. In this study, all MAPK family genes in upland cotton(Gossypium hirsutum L.) genome were collected, and then multi-sequence alignment and cluster analysis were performed. The results showed that most of the 53 GhMAPKs contained the conserved TXY motifs of plant MAPK. GhMAPKs could be classified into A, B, C and D groups corresponding to the classification of AtMAPKs. Virus induced gene silencing(VIGS) technology was further used to test whether the GhMAPKs were involved in regulating cotton resistance to Alternaria alternata, the major fungal pathogen causing cotton Alternaria leaf spot disease and leading cotton premature senescence. The results showed that the GhMAPK3, GhMAPK7, GhMAPK9 and GhMAPK19 silenced cotton plants were significantly decreased in resistance to A.alternata. The results indicated that these four types of GhMAPKs positively regulated cotton resistance to A.alternata. Then the cotton resistance regulation by each homologous gene of the four types of GhMAPKs was further tested by target silencing strategy. The results showed that only the homologous genes GhMAPK3b, GhMAPK7b, GhMAPK7c, GhMAPK9a, GhMAPK9b, GhMAPK19b and GhMAPK19c were involved in positive regulation of the cotton resistance to A.alternata. The homologous genes GhMAPK3a, GhMAPK7a, GhMAPK7d and GhMAPK19a were not involved in regulation of the cotton resistance to A.alternata.
引文
[1] LU Wenjing, CHU Xiaoqian, LI Yuzhen, et al. Cotton GhMKK1 induces the tolerance of salt and drought stress, and mediates defence responses to pathogen infection in transgenic Nicotiana benthamiana [J/OL].PLoS ONE,2013,8(7):e68503.
    [2] MAPK Group. Mitogen-activated protein kinase cascades in plants: a new nomenclature [J].Trends Plant Science,2002,7(7):301-308.
    [3] MENG Xiangzong, ZHANG Shuqun. MAPK cascades in plant disease resistance signaling[J]. Annual Review of Phytopathology, 2013, 51(1): 245-266.
    [4] ASAI T, TENA G, PLOTNIKOVA J, et al. MAP kinase signalling cascade in Arabidopsis innate immunity[J]. Nature, 2002, 415(6875): 977-983.
    [5] GAO Minghui, LIU Jinman, BI Dongling, et al. MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants [J]. Cell Research, 2008, 18(12): 1190-1198.
    [6] MAO Guohong, MENG Xiangzong, LIU Yidong, et al. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis [J]. Plant Cell, 2011, 23(4): 1639-1653.
    [7] REN Dongtao, LIU Yidong, YANG K Y, et al. A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(14): 5638-5643.
    [8] JALMI S K, SINHA A K. Functional involvement of a mitogen activated protein kinase module, OsMKK3-OsMPK7-OsWRK30 in mediating resistance against Xanthomonas oryzae in rice [J]. Scientific Reports, 2016, 6: 37974.
    [9] JIN Hailing, LIU Yidong, YANG K Y, et al. Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco [J].The Plant Journal,2003,33(4):719-731.
    [10] ZHANG Shuqun, LIU Yidong, KLESSIG D F. Multiple levels of tobacco WIPK activation during the induction of cell death by fungal elicitins [J].The Plant Journal,2000,23(3):339-347.
    [11] SHI Jing, AN Hailong, ZHANG Liang, et al. GhMPK7, a novel multiple stress-responsive cotton group C MAPK gene, has a role in broad spectrum disease resistance and plant development [J]. Plant Molecular Biology, 2010, 74(2): 1-17.
    [12] SHI Jing, ZHANG Liang, AN Hailong, et al. GhMPK16, a novel stress-responsive group D MAPK gene from cotton, is involved in disease resistance and drought sensitivity [J]. BMC Molecular Biology, 2011, 12(22): 1-36.
    [13] HILLOCKS R J. Cotton diseases [M]. Wallingford UK: CAB International, 1992: 191-238.
    [14] ZHAO Jingqing, ZHAO Fuqiang, JIAN Guiliang, et al. Intensified Alternaria spot disease under potassium deficiency conditions results in acceleration of cotton (Gossypium hirsutum L.) leaf senescence[J]. Australian Journal of Crop Science, 2013, 7(2): 241-248.
    [15] 李莎. 棉花轮纹斑病及其拮抗细菌的筛选和鉴定[D]. 北京: 中国农业科学院, 2011.
    [16] ZHAO Jingqing, LI Sha, JIANG Tengfei, et al. Chilling stress-the key predisposing factor for causing Alternaria alternata infection and leading to cotton (Gossypium hirsutum L.) leaf senescence [J/OL]. PLoS ONE, 2012, 7(4): e36126.
    [17] 齐放军, 简桂良, 李家胜. 棉花早衰、红叶茎枯病与棉花轮纹斑病间关系辨析[J]. 棉花学报, 2013, 25(1): 81-85.
    [18] KUMAR S, TAMURA K, NEI M. MEGA3: Integrated software for molecula revolutionary genetics analysis and sequence alignment [J].Briefings in Bioinformatics,2004,5(2):150-163.
    [19] LIU Qingpo, XUE Qingzhong. Computational identification and phylogenetic analysis of the MAPK gene family in Oryza sativa [J]. Plant Physiology & Biochemistry,2007,45(1):6-14.
    [20] FERNANDEZ-POZO N, ROSLI H G, MARTIN G B, et al. The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics[J]. Molecular Plant, 2015, 8(3): 486-488.
    [21] 蒋建雄, 张天真. 利用CTAB/酸酚法提取棉花组织总RNA[J]. 棉花学报, 2003, 15(3): 166-167.
    [22] GAMBINO G, PERRONE I, GRIBAUDO I. A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants [J]. Phytochemical Analysis, 2008, 19(6): 520-525.
    [23] GAO Xiquan, WHEELER T, LI Zaohu, et al. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt [J]. Plant Journal, 2011, 66(2): 293-305.
    [24] MEHTA Y R. Severe outbreak of stemphylium leaf blight, a new disease of cotton in Brazil [J]. Plant Disease, 1998, 82(82): 333-336.
    [25] JONAK C, ?KRéSZ L, B?GRE, et al. Complexity, cross talk and integration of plant MAP kinase signalling [J]. Current Opinion in Plant Biology, 2002, 5(5): 415-424.
    [26] 林俐, 吴健. 植物MAPK级联在逆境胁迫响应中的作用研究进展[J]. 分子植物育种, 2018, 16(1): 280-288.
    [27] MORRIS P C. MAP kinase signal transduction pathways in plants [J]. New Phytologist, 2001, 151(1): 67-89.
    [28] WANKHEDE D P, MISRA M, SINGH P, et al. Rice mitogen activated protein kinase kinase and mitogen activated protein kinase interaction network revealed by in-silico docking and yeast two-hybrid approaches [J/OL].PLoS ONE,2013,8(5):e65011.
    [29] ZHANG Xingtan, CHENG Tingcai, WANG Genhong, et al. Cloning and evolutionary analysis of tobacco MAPK gene family [J]. Molecular Biology Reports, 2013, 40(2): 1407-1415.
    [30] KONG Fuling, WANG Jie, CHENG Lin, et al. Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanum lycopersicum [J]. Gene, 2012, 499(1): 108-120.
    [31] WANG Jie, PAN Changtian, WANG Yan, et al. Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber[J]. BMC Genomics, 2015, 16(1): 386.
    [32] SONG Qiuming, LI Dayong, DAI Yi, et al. Characterization, expression patterns and functional analysis of the MAPK and MAPKK genes in watermelon (Citrullus lanatus)[J]. BMC Plant Biology, 2015, 15(1): 298.
    [33] RAYAPURAM N, BIGEARD J, ALHPRAIBI H, et al. Quantitative phosphoproteomic analysis reveals shared and specific targets of mitogen-activated protein kinases (MAPKs) MPK3, MPK4, and MPK6 [J]. Molecular & Cell Proteomics, 2018, 17(1): 75-94.
    [34] BURCH-SMITH T M, ANDERSON J C, MARTIN G B, et al. Applications and advantages of virus-induced gene silencing for gene function studies in plants[J].Plant Journal,2004,39(5):734-746.
    [35] 宋震,李中安,周常勇.病毒诱导的基因沉默(VIGS)研究进展[J].园艺学报,2014,41(9):1885-1894.
    [36] 张文蔚.陆地棉抗黄萎病相关基因筛选及功能验证[D].北京:中国农业科学院,2013.
    [37] ZHANG Wenwei, ZHANG Huachong, LIU Kai, et al. Large-scale identification of Gossypium hirsutum genes associated with Verticillium dahliae by comparative transcriptomic and reverse genetics analysis [J/OL].PLoS ONE,2017,12(8):e0181609.
    [38] 程慧,张帅,雒珺瑜,等.利用VIGS技术研究棉花GhPPO1基因的抗虫作用[J].农业生物技术学报,2017,25(5):722-728.
    [39] 李芳军.利用VIGS技术研究棉花抗逆基因功能[D].北京:中国农业大学,2014.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.