氯化锶非平衡吸附动力学模型及其在制冷中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Non-equilibrium sorption kinetic models of SrCl_2 and its application for refrigeration
  • 作者:安国亮 ; 王丽伟 ; 周志松 ; 江龙 ; 王如竹
  • 英文作者:AN Guoliang;WANG Liwei;ZHOU Zhisong;JIANG Long;WANG Ruzhu;School of Mechanical Engineering, Shanghai Jiao Tong University;
  • 关键词:吸附 ; 吸附剂 ; 动力学模型 ; 非平衡 ; 滞后
  • 英文关键词:solid sorption;;sorbents;;kinetic model;;non-equilibrium;;hysteresis
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:上海交通大学机械与动力工程学院;
  • 出版日期:2017-03-04 18:19
  • 出版单位:化工学报
  • 年:2017
  • 期:v.68
  • 基金:国家自然科学基金项目(51576120)~~
  • 语种:中文;
  • 页:HGSZ201706031
  • 页数:8
  • CN:06
  • ISSN:11-1946/TQ
  • 分类号:273-280
摘要
为了研究氯化锶混合吸附剂-氨气工质对的非平衡吸附动力学模型,对混合比例为4:1(氯化锶:膨胀硫化石墨)的氯化锶-膨胀硫化石墨混合吸附剂的吸附与解吸性能进行了测试与研究。发现其非平衡吸附过程是双变量控制过程而不是单变量控制过程。通过对其等压吸附/解吸过程及解吸滞后现象进行进一步分析,建立了氯化锶混合吸附剂的动力学模型。分别用理论、实验及模型数据拟合吸附制冷过程的COP和制冷量,结果表明,所建立的非平衡动力学模型的拟合结果和实际结果吻合得很好。例如在蒸发温度为0℃、环境温度为25℃、热源温度为90.5℃以上时,拟合COP所带来的最大误差只有1.0%,而理论的平衡吸附性能计算所带来的最大误差为25.8%;理论得到的制冷量比实际值偏高188.1%,而拟合值只比实际值偏高2.1%。
        To research the non-equilibrium sorption kinetic models of SrCl_2 compound sorbents-NH_3 working pairs, the sorption and desorption performance of SrCl_2-expanded natural graphite treated with sulfuric acid(ENG-TSA) composite sorbents with the ratio of 4:1(SrCl_2:ENG-TSA) is tested and researched. Results show that the non-equilibrium sorption processes are controlled by two variables other than single variable. Then, the isobaric sorption/desorption processes and the hysteresis phenomena were analyzed, and the kinetic models were established. The refrigeration performance of composite sorbents is studied, and the corresponding COP and theoretical refrigerating capacity are analyzed by equilibrium data, experimental data, and modelling data, respectively. The results show that the established kinetic model fit the experimental data well. For instance, compared with the experimental data the error of COP by the established kinetic model is less than 1%, while that value by theoretical equilibrium data is 25.8%(under the condition of evaporating temperature of 0 ℃, environmental temperature of 25℃, and heating temperature higher than 90.5℃). The system refrigerating capacity obtained by theoretical equilibrium data is 188.1% higher than that gotten from the experimental data, while the value by kinetic model is just 2.1%.
引文
[1]王如竹,王丽伟.低品位热能驱动的绿色制冷技术:吸附式制冷[J].科学通报,2005,50(2):101-111.WANG R Z,WANG L W.Green refrigeration technology driven by low grade heat energy:adsorption refrigeration[J].Science Bulletin,2005,50(2):101-111.
    [2]姜周曙,王如竹,代彦军,等.柴油机余热驱动的渔轮吸附式冷藏系统的研究[J].新能源,2000,22(12):19-23.JIANG Z S,WANG R Z,DAI Y J,et al.Study on fishing vessels in cold storage system driven by the diesel engine waste heat[J].New Energy,2000,22(12):19-23.
    [3]SAHA B B,BOELMAN E B,KASHIWAKI T.Computational analysis of an advanced adsorption-refrigeration cycle[J].Energy,1995,20(10):983-994.
    [4]SAHA B B,KASHIWAKI T.Performance evaluation of advanced adsorption cycle driven by near-environment temperature waste heat[C]//Proceedings of the International Sorption Heat Pump Conference.Quebec,Canada,1996:277-284.
    [5]VOLD R D,VOLD M J.Colloid and Interface Chemistry[M].Massachusetts:Addison-Wesley Publishing Company Inc,1983.
    [6]章燕豪.吸附作用[M].上海:科技文献出版社,1989:127-134.ZHANG Y H.Adsorption[M].Shanghai:Scientific and Technical Documents Publishing House,1989:127-134.
    [7]王丽伟,王如竹,吴静怡,等.氯化钙-氨的吸附特性研究及在制冷中的应用[J].中国科学,2004,34(3):268-279.WANG L W,WANG R Z,WU J Y,et al.Adsorption characteristics of calcium chloride-ammonia and its application in refrigeration[J].Science China,2004,34(3):268-279.
    [8]TYKODI R J.Thermodynamics of steady states:“resistance change”transitions in steady-state systems[J].Bulletin of the Chemical Society of Japan,1979,52(2):564-570.
    [9]MAZET N,AMOUROUX M,SPINNER B.Analysis and experimental study of the transformation of a non-isothermal solid/gas reacting medium[J].Chemical Engineering Communications,1991,99(1):155-174.
    [10]GOETZ V,MARTY A.A model for reversible solid-gas reactions submitted to temperature and pressure constraints:simulation of the rate of reaction in solid-gas reactor used as chemical heat pump[J].Chemical Engineering Science,1992,47(s17/18):4445-4454.
    [11]LU H B,MAZET N,COUDEVYLLE O,et al.Comparison of a general model with a simplified approach for the transformation of solid-gas media used in chemical heat transformers[J].Chemical Engineering Science,1997,52(2):311-327.
    [12]王丽伟.新型复合吸附剂的吸附特性与机理及其在高效热管型余热制冷中的应用[D].上海:上海交通大学,2005.WANG L W.Adsorption characteristics and mechanism of a new type of composite adsorbent and its application in high efficiency heat pipe waste heat refrigeration[D].Shanghai:Shanghai Jiao Tong University,2005.
    [13]ZHOU Z S,WANG L W,JIANG L,et al.Non-equilibrium sorption performances for composite sorbents of chlorides-ammonia working pairs for refrigeration[J].International Journal of Refrigeration,2015,65:60-68.
    [14]GROLL M.Reaction beds for dry sorption machines[J].Heat Recovery Systems&Chp,1993,13(4):341-346.
    [15]GUILLEMINOT J J,CHOISIER A,CHALFEN J B,et al.Heat transfer intensification in fixed bed adsorbers[J].Heat Recovery Systems&Chp,1993,13(93):297-300.
    [16]SPINNER B.Ammonia-based thermochemical transformers[J].Heat Recovery Systems&Chp,1993,13(93):301-307.
    [17]MAURAN S,PRADES P,L'HARIDON F.Heat and mass transfer in consolidated reacting beds for thermochemical systems[J].Heat Recovery Systems&Chp,1993,13(4):315-319.
    [18]EUN T H,SONG H K,HAN J H,et al.Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps(I):Characterization of the composite blocks[J].International Journal of Refrigeration,2000,23(1):64-73.
    [19]KANONCHIK L E,VASILIEV L L,BABENKO V A.Heat and mass transfer intensification in solid sorption systems[J].Journal of Enhanced Heat Transfer,1998,5(2):111-125.
    [20]JIANG L,WANG L W,WANG R Z.Investigation on thermal conductive consolidated composite Ca Cl2 for adsorption refrigeration[J].International Journal of Thermal Sciences,2014,81(4):68-75.
    [21]LIU CHUN Y I,KEN-ICHI A.Ammonia absorption on alkaline earth halides as ammonia separation and storage procedure[J].Bulletin of the Chemical Society of Japan,2004,77(1):123-131.
    [22]SCHWAAB M,PINTO J C.Optimum reference temperature for reparameterization of the Arrhenius equation(Ⅰ):Problems involving one kinetic constant[J].Chemical Engineering Science,2007,62(10):2750-2764.
    [23]夏少武.活化能及其计算[M].北京:高等教育出版社,1993:15-18.XIA S W.Activation Energy and Its Calculation[M].Beijing:Higher Education Press,1993:15-18.
    [24]NEVEU P,CASTAING J.Solid-gas chemical heat pumps:field of application and performance of the internal heat of reaction recovery process[J].Heat Recovery Systems&Chp,1993,13(93):233-251.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.