革兰氏阴性菌中β-内酰胺酶诱导表达调控机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in regulatory mechanism for inducing β-lactamase in Gram-negative bacteria
  • 作者:徐超奕 ; 张婷 ; 蔡静晓 ; 余志良 ; 裘娟萍 ; 音建华
  • 英文作者:Chaoyi Xu;Ting Zhang;Jingxiao Cai;Zhiliang Yu;Juanping Qiu;Jianhua Yin;College of Biotechnology and Bioengineering, Zhejiang University of Technology;
  • 关键词:革兰氏阴性菌 ; β-内酰胺类抗生素 ; β-内酰胺酶 ; 调控机制 ; 双组分系统
  • 英文关键词:Gram-negative bacteria;;β-lactam antibiotics;;β-lactamase;;regulatory mechanism;;two-component system
  • 中文刊名:SHWU
  • 英文刊名:Chinese Journal of Biotechnology
  • 机构:浙江工业大学生物工程学院;
  • 出版日期:2018-07-02 12:37
  • 出版单位:生物工程学报
  • 年:2018
  • 期:v.34;No.236
  • 基金:国家自然科学基金(No.31600041)资助~~
  • 语种:中文;
  • 页:SHWU201808010
  • 页数:9
  • CN:08
  • ISSN:11-1998/Q
  • 分类号:93-101
摘要
β-内酰胺类抗生素是应用最广的一类抗菌药物。β-内酰胺酶能将β-内酰胺类抗生素水解,其诱导表达是革兰氏阴性菌对该类抗生素产生耐药性的最主要原因。文中重点综述了革兰氏阴性菌中β-内酰胺酶诱导表达的两种调控机制。在经典的ampR-ampC调控系统中,β-内酰胺酶的诱导表达与肽聚糖循环密切相关,并且LysR型转录因子AmpR发挥核心的调控作用。近年来发现β-内酰胺类抗生素能激活双组分系统,从而诱导β-内酰胺酶的表达。最后,讨论了革兰氏阴性菌中β-内酰胺类耐药今后的研究方向。
        Beta-lactams are the most widely used antibiotics. One of the principle mechanisms for Gram-negative bacteria to resist β-lactams is by producing β-lactamases that degrade β-lactams. This review highlights two regulatory mechanisms for inducing β-lactamase in Gram-negative bacteria. In the ampR-ampC paradigm, the induction of β-lactamase is intimately linked to peptidoglycan recycling. AmpR, a LysR-type transcriptional regulator, plays a central role in regulating expression of β-lactamase. Recent studies found that two-component signal transduction pathway is activated by β-lactams, which in turn induces the expression of β-lactamase. Finally, we discussed the future research directions in β-lactam resistance in Gram-negative bacteria.
引文
[1]Llarrull LI,Testero SA,Fisher JF,et al.The future of theβ-lactams.Curr Opin Microbiol,2010,13(5):551-557.
    [2]Zapun A,Contreras-Martel C,Vernet T.Penicillin-binding proteins andβ-lactam resistance.FEMS Microbiol Rev,2008,32(2):361-385.
    [3]Willyard C.The drug-resistant bacteria that pose the greatest health threats.Nature,2017,543(7643):15.
    [4]Blair JM,Webber MA,Baylay AJ,et al.Molecular mechanisms of antibiotic resistance.Nat Rev Microbiol,2015,13(1):42-51.
    [5]Ambler RP.The structure ofβ-lactamases.Philos Trans R Soc Lond B Biol Sci,1980,289(1036):321-331.
    [6]Mark BL,Vocadlo DJ,Oliver A.Providingβ-lactams a helping hand:targeting the Amp Cβ-lactamase induction pathway.Fut Microbiol,2011,6(12):1415-1427.
    [7]Bush K,Jacoby GA.Updated functional classification ofβ-lactamases.Antimicrob Agents Chemother,2010,54(3):969-976.
    [8]Dietz H,Pfeifle D,Wiedemann B.The signal molecule for beta-lactamase induction in Enterobacter cloacae is the anhydromuramylpentapeptide.Antimicrob Agents Chemother,1997,41(10):2113-2120.
    [9]Jacobs C,Huang LJ,Bartowsky E,et al.Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction.EMBO J,1994,13(19):4684-4694.
    [10]Jacobs C,Frère JM,Normark S.Cytosolic intermediates for cell wall biosynthesis and degradation control inducibleβ-lactam resistance in Gram-negative bacteria.Cell,1997,88(6):823-832.
    [11]Zeng XM,Lin J.Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria.Front Microbiol,2013,4:128.
    [12]Park JT,Uehara T.How bacteria consume their own exoskeletons(turnover and recycling of cell wall peptidoglycan).Microbiol Mol Biol Rev,2008,72(2):211-227.
    [13]Cheng QM,Park JT.Substrate specificity of the Amp G permease required for recycling of cell wall anhydro-muropeptides.J Bacteriol,2002,184(23):6434-6436.
    [14]Chahboune A,Decaffmeyer M,Brasseur R,et al.Membrane topology of the Escherichia coli Amp Gpermease required for recycling of cell wall anhydromuropeptides and Amp Cβ-lactamase induction.Antimicrob Agents Chemother,2005,49(3):1145-1149.
    [15]Cheng QM,Li HS,Merdek K,et al.Molecular characterization of theβ-N-Acetylglucosaminidase of Escherichia coli and its role in cell wall recycling.JBacteriol,2000,182(17):4836-4840.
    [16]Kopp U,Wiedemann B,Lindquist S,et al.Sequences of wild-type and mutant amp D genes of Citrobacter freundii and Enterobacter cloacae.Antimicrob Agents Chemother,1993,37(2):224-228.
    [17]Juan C,MaciáMD,Gutiérrez O,et al.Molecular mechanisms ofβ-lactam resistance mediated by Amp C hyperproduction in Pseudomonas aeruginosa clinical strains.Antimicrob Agents Chemother,2005,49(11):4733-4738.
    [18]Langaee TY,Gagnon L,Huletsky A.Inactivation of the amp D gene in Pseudomonas aeruginosa leads to moderate-basal-level and hyperinducible amp Cβ-lactamase expression.Antimicrob Agents Chemother,2000,44(3):583-589.
    [19]Juan C,MoyáB,Pérez JL,et al.Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-levelβ-lactam resistance involves three Amp D homologues.Antimicrob Agents Chemother,2006,50(5):1780-1787.
    [20]Schmidtke AJ,Hanson ND.Model system to evaluate the effect of amp D mutations on Amp C-mediatedβ-lactam resistance.Antimicrob Agents Chemother,2006,50(6):2030-2037.
    [21]Korfmann G,Sanders CC.amp G is essential for high-level expression of Amp C beta-lactamase in Enterobacter cloacae.Antimicrob Agents Chemother,1989,33(11):1946-1951.
    [22]Lindquist S,Weston-Hafer K,Schmidt H,et al.Amp G,a signal transducer in chromosomalβ-lactamase induction.Mol Microbiol,1993,9(4):703-715.
    [23]Zamorano L,Reeve TM,Deng LH,et al.Nag Zinactivation prevents and revertsβ-lactam resistance,driven by Amp D and PBP 4 mutations,in Pseudomonas aeruginosa.Antimicrob Agents Chemother,2010,54(9):3557-3563.
    [24]Lin HV,Massam-Wu T,Lin CP,et al.The Vibrio cholerae var regulon encodes a metallo-β-lactamase and an antibiotic efflux pump,which are regulated by Var R,a Lys R-type transcription factor.PLo S ONE,2017,12(9):e0184255.
    [25]Yang TC,Chen TF,Tsai JJP,et al.Amp G is required for BlaXc beta-lactamase expression in Xanthomonas campestris pv.campestris str.17.FEMS Microbiol Lett,2013,340(2):101-108.
    [26]Yang TC,Chen TF,Tsai JJ,et al.Nag Z is required for beta-lactamase expression and full pathogenicity in Xanthomonas campestris pv.campestris str.17.Res Microbiol,2014,165(8):612-619.
    [27]Okazaki A,Avison MB.Induction of L1 and L2β-lactamase production in Stenotrophomonas maltophilia is dependent on an Amp R-type regulator.Antimicrob Agents Chemother,2008,52(4):1525-1528.
    [28]Yang TC,Huang YW,Hu RM,et al.Amp DI is involved in expression of the chromosomal L1 and L2β-lactamases of Stenotrophomonas maltophilia.Antimicrob Agents Chemother,2009,53(7):2902-2907.
    [29]Huang YW,Lin CW,Hu RM,et al.Amp N-Amp Goperon is essential for expression of L1 and L2β-lactamases in Stenotrophomonas maltophilia.Antimicrob Agents Chemother,2010,54(6):2583-2589.
    [30]Lin CW,Lin HC,Huang YW,et al.2011.Inactivation of mrc A gene derepresses the basal-level expression of L1 and L2β-lactamases in Stenotrophomonas maltophilia.J Antimicrob Chemother,66(9):2033-2037.
    [31]Talfan A,Mounsey O,Charman M,et al.Involvement of mutation in amp D I,mrc A,and at least one additional gene inβ-lactamase hyperproduction in Stenotrophomonas maltophilia.Antimicrob Agents Chemother,2013,57(11):5486-5491.
    [32]Huang YW,Hu RM,Lin CW,et al.Nag Z-dependent and Nag Z-independent mechanisms forβ-lactamase expression in Stenotrophomonas maltophilia.Antimicrob Agents Chemother,2012,56(4):1936-1941.
    [33]Juan C,Torrens G,González-Nicolau M,et al.Diversity and regulation of intrinsicβ-lactamases from non-fermenting and other Gram-negative opportunistic pathogens.FEMS Microbiol Rev,2017,41(6):781-815.
    [34]Cavallari JF,Lamers RP,Scheurwater EM,et al.Changes to its peptidoglycan-remodeling enzyme repertoire modulateβ-lactam resistance in Pseudomonas aeruginosa.Antimicrob Agents Chemother,2013,57(7):3078-3084.
    [35]Lamers RP,Nguyen UT,Nguyen Y,et al.Loss of membrane-bound lytic transglycosylases increases outer membrane permeability andβ-lactam sensitivity in Pseudomonas aeruginosa.Microbiology Open,2015,4(6):879-895.
    [36]Huang YW,Wu CJ,Hu RM,et al.Interplay among membrane-bound lytic transglycosylase D1,the Cre BC two-component regulatory system,the Amp NG-Amp DI-Nag Z-Amp R regulatory circuit,and L1/L2β-lactamase expression in Stenotrophomonas maltophilia.Antimicrob Agents Chemother,2015,59(11):6866-6872.
    [37]Moya B,D?tsch A,Juan C,et al.β-Lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein.PLo S Pathog,2009,5(3):e1000353.
    [38]Ropy A,Cabot G,Sánchez-Diener I,et al.Role of Pseudomonas aeruginosa low-molecular-mass penicillin-binding proteins in Amp C expression,β-lactam resistance,and peptidoglycan structure.Antimicrob Agents Chemother,2015,59(7):3925-3934.
    [39]Stock AM,Robinson VL,Goudreau PN.Two-component signal transduction.Annu Rev Biochem,2000,69(1):183-215.
    [40]Avison MB,Niumsup P,Walsh TR,et al.Aeromonas hydrophila Amp H and Cep Hβ-lactamases:derepressed expression in mutants of Escherichia coli lacking cre B.J Antimicrob Chemother,2000,46(5):695-702.
    [41]Niumsup P,Simm AM,Nurmahomed K,et al.Genetic linkage of the penicillinase gene,amp,and blr AB,encoding the regulator ofβ-lactamase expression in Aeromonas spp.J Antimicrob Chemother,2003,51(6):1351-1358.
    [42]Tayler AE,Ayala JA,Niumsup P,et al.Induction ofβ-lactamase production in Aeromonas hydrophila is responsive toβ-lactam-mediated changes in peptidoglycan composition.Microbiology,2010,156(8):2327-2335.
    [43]Avison MB,Horton RE,Walsh TR,et al.Escherichia coli Cre BC is a global regulator of gene expression that responds to growth in minimal media.J Biol Chem,2001,276(29):26955-26961.
    [44]Avison MB,Niumsup P,Nurmahomed K,et al.Role of the'cre/blr-tag'DNA sequence in regulation of gene expression by the Aeromonas hydrophilaβ-lactamase regulator,Blr A.J Antimicrob Chemother,2004,53(2):197-202.
    [45]Cariss SJL,Tayler AE,Avison MB.Defining the growth conditions and promoter-proximal DNAsequences required for activation of gene expression by Cre BC in Escherichia coli.J Bacteriol,2008,190(11):3930-3939.
    [46]Zamorano L,MoyàB,Juan C,et al.The Pseudomonas aeruginosa Cre BC two-component system plays a major role in the response toβ-lactams,fitness,biofilm growth,and global regulation.Antimicrob Agents Chemother,2014,58(9):5084-5095.
    [47]Huang HH,Chen WC,Lin CW,et al.Relationship of the Cre BC two-component regulatory system and inner membrane protein Cre D with swimming motility in Stenotrophomonas maltophilia.PLo SONE,2017,12(4):e0174704.
    [48]Chiou J,Li RC,Chen S.CARB-17 Family ofβ-lactamases mediates intrinsic resistance to penicillins in Vibrio parahaemolyticus.Antimicrob Agents Chemother,2015,59(6):3593-3595.
    [49]Li L,Wang QY,Zhang H,et al.Sensor histidine kinase is aβ-lactam receptor and induces resistance toβ-lactam antibiotics.Proc Natl Acad Sci USA,2016,113(6):1648-1653.
    [50]Hofer U.Antimicrobials:β-lactam sensor discovered.Nat Rev Microbiol,2016,14(4):195.
    [51]Amoroso A,Boudet J,Berzigotti S,et al.Apeptidoglycan fragment triggersβ-lactam resistance in Bacillus licheniformis.PLo S Pathog,2012,8(3):e1002571.
    [52]Ramírez MS,Merkier AK,Almuzara M,et al.Reservoir of antimicrobial resistance determinants associated with horizontal gene transfer in clinical isolates of the genus Shewanella.Antimicrob Agents Chemother,2010,54(10):4516-4517.
    [53]Janda JM,Abbott SL.The genus Shewanella:from the briny depths below to human pathogen.Crit Rev Microbiol,2014,40(4):293-312.
    [54]Poirel L,Héritier C,Nordmann P.Chromosome-encoded Ambler class Dβ-lactamase of Shewanella oneidensis as a progenitor of carbapenem-hydrolyzing oxacillinase.Antimicrob Agents Chemother,2004,48(1):348-351.
    [55]Yin JH,Sun LL,Dong YY,et al.Expression of bla Aunderlies unexpected ampicillin-induced cell lysis of Shewanella oneidensis.PLo S ONE,2013,8(3):e60460.
    [56]Yin JH,Mao YT,Ju LL,et al.Distinct roles of major peptidoglycan recycling enzymes inβ-lactamase production in Shewanella oneidensis.Antimicrob Agents Chemother,2014,58(11):6536-6543.
    [57]Wu GF,Yin JH.Peptidoglycan recycling and bacterial resistance toβ-lactams.Chin Pharm J,2017,52(3):180-184(in Chinese).吴根福,音建华.肽聚糖循环及细菌对β-内酰胺类抗生素的耐受性.中国药学杂志,2017,52(3):180-184.
    [58]Yin JH,Sun YY,Mao YT,et al.PBP1a/Lpo A but not PBP1b/Lpo B are involved in regulation of the majorβ-lactamase gene bla A in Shewanella oneidensis.Antimicrob Agents Chemother,2015,59(6):3357-3364.
    [59]Yin JH,Sun YY,Sun YJ,et al.Deletion of Lytic transglycosylases increaseβ-lactam resistance in Shewanella oneidensis.Front Microbiol,2018,9:13.
    [60]Yin JH,Cai JX,Yuan Z,et al.Deletion of PBP1a/Lpo A complex compromises cell envelope integrity in Shewanella oneidensis.FEMS Microbiol Lett,2018,doi:10.1093/femsle/fny128.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.