植物塘人工湿地系统对灌溉水Cd的生态拦截效果
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ecological interception effect of plant pond constructed wetland system on irrigation water Cd
  • 作者:蒋凯 ; 邓潇 ; 周航 ; 龙坚 ; 李欣阳 ; 董霞 ; 刘文辉 ; 侯红波 ; 彭佩钦 ; 廖柏寒
  • 英文作者:JIANG Kai;DENG Xiao;ZHOU Hang;LONG Jian;LI Xin-yang;DONG Xia;LIU Wen-hui;HOU Hong-bo;PENG Pei-qin;LIAO Bo-han;College of Environmental Science & Engineering, and Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology;Agricultural Integrated Service Center of Ningxiang City,Shuangjiangkou Town;
  • 关键词:灌溉水 ; 湿地植物 ; 人工湿地系统 ; 稻田 ; 米Cd
  • 英文关键词:irrigation water;;wetland plant;;constructed wetland system;;paddy;;rice Cd
  • 中文刊名:NXDH
  • 英文刊名:Research of Agricultural Modernization
  • 机构:中南林业科技大学环境科学与工程学院稻米品质安全控制湖南省工程实验室;宁乡市双江口镇农业综合服务中心;
  • 出版日期:2019-05-15
  • 出版单位:农业现代化研究
  • 年:2019
  • 期:v.40;No.232
  • 基金:国家科技支撑计划项目(2015BAD05B02);; 农业部财政部重大专项(农办财函〔2016〕6号);; 湖南省重点学科建设项目(2006180)~~
  • 语种:中文;
  • 页:NXDH201903018
  • 页数:9
  • CN:03
  • ISSN:43-1132/S
  • 分类号:164-172
摘要
为拦截灌溉水Cd,设计实施了水平潜流与表面流两种工艺组合的植物塘人工湿地系统,在水稻生育期净化处理灌溉水,结合田间水稻种植小区试验,于2017年1月至2018年12月逐月采集水样,同时多次采集水稻和土壤样品,监测分析样品Cd含量,探讨人工湿地系统对灌溉水中Cd的净化效率及对米Cd累积的影响。结果表明:连续两年监测,人工湿地系统进水Cd浓度范围为0.034~0.644μg/L,平均浓度为0.232μg/L,经过植物塘人工湿地系统处理后出水Cd浓度范围为0.001~0.189μg/L,平均浓度为0.059μg/L。一级、二级和三级人工湿地系统对灌溉水中Cd的去除率分别为50.21%、14.06%和7.81%,人工湿地系统总去除率达72.06%;与未净化灌溉水相比,经人工湿地系统净化处理后灌溉的水稻糙米Cd含量下降了10.50%~24.51%。研究表明,植物塘人工湿地系统能有效拦截去除灌溉水中的Cd,减少该途径对稻田土壤Cd输入通量,并降低糙米中Cd累积量。本结果可为典型稻田重金属污染灌溉水的净化及湿地植物的选择、减少稻田重金属输入和粮食安全生产提供理论依据和参考。
        An ecological interception system consisted of horizontal subsurface flow and surface flow wetland was attempted to examine the effects of removal of cadmium(Cd) from the effluents of the terminal ditches of the system.The system combined with a paddy trial operated during the period of rice growing. The water samples were collected monthly from January 2017 to December 2018, during which the soil and rice samples were collected simultaneously to monitor and analyze the Cd content of those samples, in order to investigate the Cd purification in water and Cd reduction in brown rice. Results showed that the concentration of Cd in the influent water of the system ranged from0.034 μg/L to 0.644 μg/L, with an average concentration of 0.232 μg/L according to our monitoring data during two consecutive years. After treatment with the system, the concentration of Cd in the effluent ranged from 0.001 μg/L to0.189 μg/L, with an average concentration of 0.059 μg/L. The removal rates of Cd in the effluent water treated by the primary, secondary and tertiary systems were 50.21%, 14.06% and 7.81%, respectively. And the total removal rate of Cd by constructed wetland system reached 72.06%. Compared with unpurified irrigation water, Cd concentration of brown rice irrigated with the effluent water from the wetland system decreased by 10.50% to 24.51%. Therefore the ecological interception system plays an effective role in removing Cd concentration from irrigation water, reducing Cd input flux to paddy soil and Cd accumulation in brown rice. The research can provide theoretical basis and reference for purification of irrigation water in typical paddy fields polluted by heavy metals, selection of wetland plants, to reduce heavy metal input in paddy fields and security of food production.
引文
[1]黄道友,朱奇宏,朱捍华,等.重金属污染耕地农业安全利用研究进展与展望[J].农业现代化研究,2018,39(6):1030-1043.Huang D Y,Zhu Q H,Zhu H H,et al.Advances and prospects of safety agro-utilization of heavy metal contaminated farmland soil[J].Research of Agricultural Modernization,2018,39(6):1030-1043.
    [2]胡鹏杰,李柱,吴龙华.我国农田土壤重金属污染修复技术、问题及对策诌议[J].农业现代化研究,2018,39(4):535-542.Hu P J,Li Z,Wu L H.Current remediation technologies of heavy metal polluted farmland soil in China:Progress,challenge and countermeasure[J].Research of Agricultural Modernization,2018,39(4):535-542.
    [3]赵忠明,陈卫平,焦文涛,等.再生水灌溉农田土壤镉累积规律模拟研究[J].环境科学,2012,33(12):4115-4120.Zhao Z M,Chen W P,Jiao W T,et al.Modeling the Cd accumulation in agricultural soil irrigated with reclaimed water[J].Environmental Science,2012,33(12):4115-4120.
    [4]Yang Y,Chen W,Wang M,et al.Regional accumulation characteristics of cadmium in vegetables:Influencing factors,transfer model and indication of soil threshold content[J].Environmental Pollution,2016,219:1036-1043.
    [5]Nakaya S,Chi H,Muroda K,et al.Forms of trace arsenic,cesium,cadmium,and lead transported into river water for the irrigation of Japanese paddy rice fields[J].Journal of Hydrology,2018,561:335-347.
    [6]Peng L,Deng X,Song H,et al.Manganese enhances the immobilization of trace cadmium from irrigation water in biological soil crust[J].Ecotoxicology and Environmental Safety,2019,168:369-377.
    [7]Zhao F J,Ma Y,Zhu Y G,et al.Soil contamination in China:Current status and mitigation strategies[J].Environmental Science&Technology,2014,49(2):750-759.
    [8]Hou Q,Yang Z,Ji J,et al.Annual net input fluxes of heavy metals of the agro-ecosystem in the Yangtze River Delta,China[J].Journal of Geochemical Exploration,2014,139(1):68-84.
    [9]Yadav V B,Gadi R,Kalra S.Clay based nanocomposites for removal of heavy metals from water:A review[J].Journal of Environmental Management,2019,232:803-817.
    [10]Lu S,Pei L,Bai X.Study on method of domestic wastewater treatment through new-type multi-layer artificial wetland[J].International Journal of Hydrogen Energy,2015,40(34):11207-11214.
    [11]Wojciechowska E,Gajewska M.Partitioning of heavy metals in sub-surface flow treatment wetlands receiving high-strength wastewater[J].Water Science and Technology,2013,68(2):486-493.
    [12]Gao J,Zhang J,Ma N,et al.Cadmium removal capability and growth characteristics of Iris sibirica in subsurface vertical flow constructed wetlands[J].Ecological Engineering,2015,84:443-450.
    [13]Walaszek M,Bois P,Laurent J,et al.Micropollutants removal and storage efficiencies in urban stormwater constructed wetland[J].Science of the Total Environment,2018,645:854-864.
    [14]Kelepertzis E.Accumulation of heavy metals in agricultural soils of Mediterranean:Insights from Argolida basin,Peloponnese,Greece[J].Geoderma,2014,221:82-90.
    [15]Qasaimeh A,AlSharie H,Masoud T.A review on constructed wetlands components and heavy metalre moval from wastewater[J].Journal of Environmental Protection,2015,6(7):710.
    [16]刘锋,罗沛,刘新亮,等.绿狐尾藻生态湿地处理污染水体的研究评述[J].农业现代化研究,2018,39(6):1020-1029.Liu F,Luo P,Liu X L,et al.Research advances of Myriophyllum spp.-based wetland for wastewater treatment and resource utilization[J].Research of Agricultural Modernization,2018,39(6):1020-1029.
    [17]喻理,许蒙,叶长城,等.香蒲-表面流湿地系统净化灌溉水过程中镉的分布和累积[J].农业环境科学学报,2016,35(8):1573-1579.Yu L,Xu M,Ye C C,et al.Cadmium distribution and accumulation in surface-flow constructed wetland system with planted Typha Angustifolia L.[J].Journal of Agro-Environment Science,2016,35(8):1573-1579.
    [18]韦菊阳,陈章和.梭鱼草和芦苇人工湿地对重金属和营养的去除率比较[J].应用与环境生物学报,2013,19(1):179-183.Wei J Y,Chen Z H.Removal of heavy metal elements and nutrients by Pontederia cordata and Phragmites australis constructed wetlands[J].Chinese Journal of Applied and Environmental Biology,2013,19(1):179-183.
    [19]李春晖,杨志峰,郑小康,等.黄河干流主要重金属污染特征及其与流量关系[J].水资源与水工程学报,2007,18(6):1-3.Li C H,Yang Z F,Zheng X K,et al.Pollution characters by heavy metals and its relationship with flows in the Yellow River[J].Journal of Water Resources&Water Engineering,2007,18(6):1-3.
    [20]Martínez-Cortijo J,Ruiz-Canales A.Effect of heavy metals on rice irrigated fields with waste water in high pH Mediterranean soils:The particular case of the Valencia area in Spain[J].Agricultural Water Management,2018,210:108-123.
    [21]Mohammed A,Babatunde A O.Modelling heavy metals transformation in vertical flow constructed wetlands[J].Ecological Modelling,2017,354:62-71.
    [22]Liu J,Zhang W,Qu P,et al.Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed wetlands[J].Frontiers of Environmental Science&Engineering,2016,10(2):262-269.
    [23]张荣社,李广贺,周琪,等.潜流湿地中植物对脱氮除磷效果的影响中试研究[J].环境科学,2005,26(4):83-86.Zhang R S,Li G H,Zhou Q,et al.Effects of plants on nitrogen/phosphorus removal in subsurface constructed wetlands[J].Environmental Science,2005,26(4):83-86.
    [24]Galletti A,Verlicchi P,Ranieri E.Removal and accumulation of Cu,Ni and Zn in horizontal subsurface flow constructed wetlands:Contribution of vegetation and filling medium[J].Science of the Total Environment,2010,408(21):5097-5105.
    [25]任珺,汪孔泉,杨欣,等.人工湿地基质配制对含Pb废水的处理效果研究[J].生态环境学报,2018,27(6):1138-1144.Ren J,Wang K Q,Yang X,et al.Treatment effect of substrate constitute in constructed wetland on Pb in wastewater[J].Ecology and Environmental Sciences,27(6):1138-1144.
    [26]和君强,李菊梅,马义兵,等.镉污染灌溉水入田前快速净化材料和装置研究[J].农业环境科学学报,2016,35(4):669-676.He J Q,Li J M,Ma Y B,et al.Study on materials and a device for purifying cadmium polluted irrigation water[J].Journal of AgroEnvironment Science,2016,35(4):669-676.
    [27]Bavandpour F,Zou Y,He Y,et al.Removal of dissolved metals in wetland columns filled with shell grits and plant biomass[J].Chemical Engineering Journal,2018,331:234-241.
    [28]邓潇,周航,陈珊,等.改性玉米秸秆炭和花生壳炭对溶液中Cd2+的吸附[J].环境工程学报,2016,10(11):6325-6331.Deng X,Zhou H,Chen S,et al.Adsorption of Cd2+from aqueous solution by modified corn straw biochar and peanut shell biochar[J].Chinese Journal of Environmental Engineering,2016,10(11):6325-6331.
    [29]陈永华,吴晓芙,蒋丽鹃,等.处理生活污水湿地植物的筛选与净化潜力评价[J].环境科学学报,2008,28(8):1549-1554.Chen Y H,Wu X F,Jiang L J,et al.Screening and evaluation of plant purification potential for phytoremediation of sanitary sewage[J].Acta Scientiae Circumstantiae,2008,28(8):1549-1554.
    [30]朱加宾,李冰,侯诒然,等.人工湿地不同植物根系及基质重金属富集特征及其与环境因子相关性[J].上海海洋大学学报,2018,27(4):531-542.Zhu J B,Li B,Hou Y R,et al.Heavy metal accumulation in roots and substrates of different plants in constructed wetlands and their correlations with environmental factors[J].Journal of Shanghai Ocean University,2018,27(4):531-542.
    [31]Sardans J,Pe?uelas J,Estiarte M.Warming and drought change trace element bioaccumulation patterns in a Mediterranean shrubland[J].Chemosphere,2008,70(5):874-885.
    [32]Fritioff?,Kautsky L,Greger M.Influence of temperature and salinity on heavy metal uptake by submersed plants[J].Environmental Pollution,2005,133(2):265-274.
    [33]李光辉,杨霞,徐加宽,等.不同湿地植物的根系酸化作用与重金属吸收[J].生态环境学报,2009,18(1):97-100.Li G H,Yang X,Xu J K,et al.Variations among wetland plants in root acidification and heavy metal uptake[J].Ecology and Environmental Sciences,2009,18(1):97-100.
    [34]杨秀敏,任广萌,李立新,等.土壤pH值对重金属形态的影响及其相关性研究[J].中国矿业,2017,26(6):79-83.Yang X M,Ren G M,Li L X,et al.Effect of pH value on heavy metals form of soil and their relationship[J].China Mining Magazine,2017,26(6):79-83.
    [35]倪中应,谢国雄,章明奎.酸化对耕地土壤镉铅有效性及农产品中镉铅积累的影响[J].江西农业学报,2017,29(8):52-56.Ni Z Y,Xie G X,Zhang M K.Effects of acidification on bioavailability of cadmium and lead in cultivated land soil and their accumulation in agricultural products[J].Acta Agriculturae Jiangxi,2017,29(8):52-56.
    [36]赵中秋,朱永官,蔡运龙.镉在土壤-植物系统中的迁移转化及其影响因素[J].生态环境,2005,14(2):282-286.Zhao Z Q,Zhu Y G,Cai Y L.Transport and transformation of cadmium in soil-plant systems and the influence factors[J].Ecology and Environment,2005,14(2):282-286.
    [37]李霞,张慧鸣,徐震,等.农田Cd和Hg污染的来源解析与风险评价研究[J].农业环境科学学报,2016,35(7):1314-1320.Li X,Zhang H M,Xu Z,et al.Source apportionment and risk assessment of Cd and Hg pollution in farmland[J].Journal of Agro-Environment Science,2016,35(7):1314-1320.
    [38]Pan Y P,Wang Y S.Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China[J].Atmospheric Chemistry and Physics,2015,15(2):951-972.
    [39]蒋凯,龙坚,李欣阳,等.外源Cl-添加对不同母质土壤溶液Cd2+浓度的影响[J].环境科学学报,2019,39(2):553-559.Jiang K,Long J,Li X Y,et al.Effects of exogenous Cl-on Cd2+concentrations in soil solutions of different soil types[J].Acta Scientiae Circumstantiae,2019,39(2):553-559.
    [40]邢维芹,王亚利,Kirk G Scheckel,等.不同阴离子对水溶性磷酸盐稳定污染土壤中重金属的影响[J].环境科学学报,2013,33(10):2814-2820.Xing W Q,Wang Y L,Scheckel K G,et al.Effects of anions on the immobilization of heavy metals in a polluted soil with soluble phosphate[J].Acta Scientiae Circumstantiae,2013,33(10):2814-2820.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.