励磁线圈结构参数对金属射流箍缩特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Pinch Effect of Magnet Exciting Coil Structural Parameters on Shaped Charge Jet
  • 作者:孟学平 ; 雷彬 ; 向红军 ; 吕庆敖 ; 齐文达
  • 英文作者:MENG Xueping;LEI Bin;XIANG Hongjun;LYU Qing'ao;QI Wenda;Department of Ammunition Engineering,Ordnance Engineering College;
  • 关键词:兵器科学与技术 ; 励磁线圈长度 ; 励磁线圈内径 ; 破甲弹金属射流 ; 箍缩特性 ; 电磁力
  • 英文关键词:ordnance science and technology;;length of magnet exciting coil;;inner diameter of magnet exciting coil;;shaped charge jet;;pinch characters;;electromagnetic force
  • 中文刊名:HPFS
  • 英文刊名:Journal of Gun Launch & Control
  • 机构:军械工程学院弹药工程系;
  • 出版日期:2017-12-15
  • 出版单位:火炮发射与控制学报
  • 年:2017
  • 期:v.38;No.148
  • 基金:国家自然科学基金项目(51307182)
  • 语种:中文;
  • 页:HPFS201704003
  • 页数:7
  • CN:04
  • ISSN:61-1280/TJ
  • 分类号:14-20
摘要
对励磁线圈内部磁场进行了理论分析,建立了线圈与金属射流作用的有限元模型,得出了励磁线圈结构参数变化对金属射流箍缩特性的影响规律。结果表明,随着励磁线圈长度增大,金属射流中的感应电流密度、磁感应强度及电磁力随之增大,励磁线圈长度要大于金属射流劲缩部位长度,才能保证金属射流有效变形;随着励磁线圈内径增大,金属射流中的感应电流密度、磁感应强度及电磁力随之减小,励磁线圈内径尺寸要尽量接近金属射流直径最大尺寸,二者直径差尽量控制在3~5 mm范围内,以形成较大磁压力差,减小由于金属射流轴向速度梯度引起的表面扰动,进而延缓金属射流箍缩直至断裂的过程,增强其对装甲等军事目标的侵彻穿深能力。研究成果将为破甲弹威力电磁增强技术可行性论证、原理试验及相关结构设计提供重要的理论和技术支撑。
        In order to analyze the pinch effect of magnet exciting coil structural parameters on shaped charge jet of High-Explosive Anti-Tank( HEAT),theoretical analysis of internal magnetic field was done with finite model of coil and shaped charge jet established and pinch effect law of magnet exciting coil structural parameters on shaped charge jet obtained. The results show that,with length increase of magnet exciting coil,induced current density,magnetic flux density and electromagnetic force of shaped charge jet increase,with the length of magnet exciting coil being bigger than that of shaped charge jet pinch part,so that it can ensure effective deformation of shaped charge jet. With diametrical increase of magnet exciting coil,induced current density,magnetic flux density and electromagnetic force of shaped charge jet decrease,the diametrical size of magnet exciting coil gets as close to maximum diameter of shaped charge jet,and diametrical difference between them is controlled between 3 ~5 mm,so that it can result in a big magnetic pressure difference,decrease surface fluctuation of shaped charge jet caused by axial velocity gradient,with breakage process of shaped charge jet delayed,integrality and continuity maintained and the penetration ability of shaped charge jet enhanced in the end. The results can provide theoretical and technical support for feasibility demonstration,principle test and related physical design of the enhanced HEAT technology with the electromagnetic method.
引文
[1]WANG Cheng,HUANG Fenglei,NING Jianguo.Jet formation and penetration mechanism of W typed shaped charge[J].Acta Mech Sin,2009,25(1):107-120.
    [2]HAN Fang,HU Yang,ZHANG Han.Numerical simulation of the shaped charge jet velocity effected by warhead shell[J].Journal of Beijing Institute of Technology,2009,18(2):131-135.
    [3]LI Xiangdong,YANG Yanshi,LYU Shengtao.A numerical study on the disturbance of explosive reactive armors to jet penetration[J].Defense Technology,2014,10(1):66-75.
    [4]陈醇,李伟兵,王晓鸣,等.高能炸药驱动下弹体膨胀破碎过程试验研究[J].工程力学,2015,32(10):203-208.CHEN Chun,LI Weibing,WANG Xiaoming,et al.Experimental studies on the expansion and fracture of projectiles under high power explosives[J].Engineering Mechanics,2015,32(10):203-208.(in Chinese)
    [5]侯秀成,蒋建伟,陈智刚.有效射流结构模式的数值模拟[J].爆炸与冲击,2014,34(1):35-40.HOU Xiucheng,JIANG Jianwei,CHEN Zhigang.Numerical simulation on structure modules of effective jet[J].Explosion and Shock Waves,2014,34(1):35-40.(in Chinese)
    [6]HUSSAIN G,HAMEED A,HORSFALL I,et al.Experimental and simulation optimization analysis of the whipple shields against shaped charge[J].Acta Mech Sin,2012,28(3):877-884.
    [7]孙承纬.爆炸物理学[M].北京:科学出版社,2011:1048-1061.SUN Chengwei.Explosion physics[M].Beijing:Science Press,2011:1048-1061.(in Chinese)
    [8]SHVETSOV G A,MATROSOV A D,FEDORWV S V,et al.Effect of external magnetic fields on shaped-charge operation[J].International Journal of Impact Engineering,2011:521-526.
    [9]SHVETSOV G A,MATROSOV A D,FEDOROV S V,et al.Electromagnetic control of the shaped-charge effect[C]∥The 19th International Symposium of Ballistics.Interlaken,Switzerland:IEEE,2001(5):851-857.
    [10]SHVETSOV G A,MATROSOV A D.Disruption of shaped charge jets by a pulsed current[J].Journal of Applied Mechanics&Technical Physics,2004,45(2):269-275.
    [11]FEDOROV S V,BABKIN A V,LADOV S V.Magnetocumulative effect during explosion of a shaped charge with an axial magnetic field produced in the charge liner[J].Zhurnal Tekhnicheskoi Fiziki,2003,73(8):111-117.
    [12]俎栋林.电动力学[M].北京:清华大学出版社,2006:71-75.ZU Donglin.Electrodynamics[M].Beijing:Tsinghua University Press,2006:71-75.(in Chinese)
    [13]苑希超,雷彬,李治源,等.被动电磁装甲对金属射流箍缩电磁力的计算及验证[J].高电压技术,2013,39(1):251-256.YUAN Xichao,LEI Bin,LI Zhiyuan,et al.Calculation and verification of pinch electromagnetic action on the shaped charge jet in the passive electromagnetic armor[J].High Voltage Engineering,2013,39(1):251-256.(in Chinese)
    [14]齐文达,雷彬,向红军,等.装甲结构对被动电磁装甲防护射流性能的影响[J].强激光与粒子束,2015,27(9):251-256.QI Wenda,LEI Bin,XIANG Hongjun,et al.Effect of armor structure on defense performance of passive electromagnetic armor against shaped charge jet[J].High Power Laser and Particle Beams,2015,27(9):251-256.(in Chinese)
    [15]齐文达,雷彬,向红军,等.被动电磁装甲对铜射流破坏作用仿真与实验研究[J].工程力学,2015,32(10):250-256.QI Wenda,LEI Bin,XIANG Hongjun,et al.Simulation and experimental research on the destruction of a copper jet by passive electromagnetic armor[J].Engineering Mechanics,2015,32(10):250-256.(in Chinese)
    [16]齐文达,雷彬,向红军,等.基于射流变形机理被动电磁装甲板间距优化分析[J].火炮发射与控制学报,2015,36(4):1-4,18.QI Wenda,LEI Bin,XIANG Hongjun,et al.Optimization and analysis on the distance between armors of passive electromagnetic armor on the shaped charge jet deformation mechanism[J].Journal of Gun Launch&Control,2015,36(4):1-4,18.(in Chinese)
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.