流态化与物质相变的相似性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Similarity between fluidization and phase transition
  • 作者:陈卫 ; 任瑛
  • 英文作者:CHEN Wei;REN Ying;State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences;
  • 关键词:相变 ; 多相流 ; 流态化 ; 复杂系统 ; 竞争 ; 协调
  • 英文关键词:phase change;;multiphase flow;;fluidization;;complex system;;compete;;coordinate
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:中国科学院过程工程研究所多相复杂系统国家重点实验室;
  • 出版日期:2018-09-26 07:23
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:多相复杂系统国家重点实验室自主研究课题项目(MPCS-2017-A-04)
  • 语种:中文;
  • 页:HGSZ201901001
  • 页数:9
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:11-19
摘要
通常单组分多相系统随着温度的变化会呈现固态、液态和气态三种不同的结构和性质,而固体颗粒和流体组成的多相系统在循环流化床中随着气体流速的升高也会经历鼓泡、湍动和快速流化三种结构。两类体系虽然呈现不同的结构和性质,但是用介科学的概念对体系状态、区域过渡参数、驱动系统状态演变的能力、体系的控制机制等进行类比和分析,其物理根源却大同小异,均为复杂系统中不同控制机制在竞争中协调的必然结果。在对比了流态化与物质的相变两类体系之后,提出了基于能量最小多尺度模型(EMMS)的思想来构建相变理论的主张,从而期望能够充分理解物质的相变这一非平衡动力学过程。
        Generally, single-component multiphase systems exhibit three different structures and properties in solid, liquid, and gaseous state with temperature changes. The multiphase system consisting of solid particles and fluids in a circulating fluidized bed also experiences three structures with the increase of gas flow velocity, namely,bubbling, turbulence and rapid flow. Although the two systems are quite different in structure and nature, using theconcept of mesoscience to analyze the state of the system, the transitional parameter, the driving force for the system state evolution and the underlying mechanisms, the two systems turn to be quite similar in nature. Their physical roots are alike in all important essentials, which are the inevitable result of the compromise in competition betweendifferent dominant mechanisms in the complex systems. After comparing the fluidization and the phase transition, anew proposition based on the energy minimization multi-scale(EMMS) model is suggested to sufficiently characterize the real non-equilibrium kinetics of phase transition.
引文
[1] Chandler D. From 50 years ago, the birth of modern liquid-state science[J]. Annual Review of Physical Chemistry, 2017, 68:19-38.
    [2] Stanley H E. Introduction to phase transitions and critical phenomena[J]. Physics Today, 1973, 26(1):71-72.
    [3] Visintin A. Models of Phase Transitions[M]. Basel:Birkhauser,1996:59-70.
    [4]于渌,郝柏林,陈晓松.边缘奇迹:相变和临界现象[M].北京:科学出版社, 2005:168-200.Yu L, Hao B L, Chen X S. Phase Transitions and Critical Phenomena[M].Beijing:Science Press, 2005:168-200.
    [5] Schinckus C. Ising model, econophysics and analogies[J]. Physica A-Statistical Mechanics and Its Applications, 2018, 508:95-103.
    [6] Ostman E, Arnalds U B, Kapaklis V, et al. Ising-like behaviour of mesoscopic magnetic chains[J]. Journal of Physics-Condensed Matter, 2018, 30(36):365301-365304.
    [7] Hadjiagapiou I A, Velonakis I N. The random field Ising model in a shifted bimodal probability distribution[J]. Physica A-Statistical Mechanics and Its Applications, 2018, 505:965-972.
    [8] Francesco P D, Mathieu P, Chald S N. The two-dimensional Ising model[J]. Physics Today, 1975, 28(1):89-91.
    [9] Ruutu V M H, Parts U, Koivuniemi J H, et al. Intrinsic and extrinsic mechanisms of vortex formation in superfluid He-3-B[J]. Journal of Low Temperature Physics, 1997, 107(1/2):93-164.
    [10] Balibar S, Caupin F. Supersolidity and disorder[J]. Journal of Physics-Condensed Matter, 2008, 20(17):173201-173220.
    [11] Galli D E, Reatto L. Solid He-4 and the supersolid phase:from theoretical speculation to the discovery of a new state of matter?-a review of the past and present status of research[J]. Journal of the Physical Society of Japan, 2008, 77(11):111010-111026.
    [12] Kong W, Pei L, Zhang J. Linear dichroism spectroscopy of gas phase biological molecules embedded in superfluid helium droplets[J]. International Reviews in Physical Chemistry, 2009, 28(1):33-52.
    [13] Varma C M. Considerations on the mechanisms and transition temperatures of superconductivity induced by electronic fluctuations[J]. Reports on Progress in Physics, 2012, 75(5):052501-052521.
    [14] Bulgac A. Time-dependent density functional theory and the realtime dynamics of fermi superfluids[J]. Annual Review of Nuclear and Particle Science, 2013, 63:97-121.
    [15] Tsymbalenko V L. Amazing growth of helium crystal facets[J].Physics-Uspekhi, 2015, 58(11):1059-1073.
    [16] Yu Y. The second law of thermodynamics and entropy-decreasing processes with He-4 superflows[J]. Modern Physics Letters B,2016, 30(29):1630008-1630014.
    [17] Green A G, Conduit G, Kruger F. Quantum order-by-disorder in strongly correlated metals[J]. Annual Review of Condensed Matter Physics, 2018, 9:59-77.
    [18] Kosterlitz J M. Topological defects and phase transitions[J].International Journal of Modern Physics B, 2018, 32(13):1830005-1830020.
    [19] Dewhughes D. Superconducting:a 15 compounds review[J].Cryogenics, 1975, 15(8):435-454.
    [20] Izyumov Y A, Proshin Y N, Khusainov M G. Competition between superconductivity and magnetism in ferromagnet/superconductor heterostructures[J]. Physics-Uspekhi, 2002, 45(2):109-148.
    [21] Pfleiderer C. Superconducting phases of f-electron compounds[J].Reviews of Modern Physics, 2009, 81(4):1551-1624.
    [22] Gabovich A M, Voitenko A I, Ekino T, et al. Competition of superconductivity and charge density waves in cuprates:recent evidence and interpretation[J]. Advances in Condensed Matter Physics, 2010, 2010:681070-681110.
    [23] Kirtley J R. Fundamental studies of superconductors using scanning magnetic imaging[J]. Reports on Progress in Physics,2010, 73(12):126501-126537.
    [24] Wilson J A. A perspective on the Fe-based superconductors[J].Journal of Physics-Condensed Matter, 2010, 22(20):203201-203228.
    [25] Carbotte J P, Timusk T, Hwang J. Bosons in high-temperature superconductors:an experimental survey[J]. Reports on Progress in Physics, 2011, 74(6):066501-066544.
    [26] Raveau B. Strongly correlated electron systems:from chemistry to physics[J]. Comptes Rendus Chimie, 2011, 14(9):856-864.
    [27]王少华,叶自强,罗盛.高温超导输电电缆的发展现状[J].高压电器, 2011, 47(7):80-85.Wang S H, Ye Z Q, Luo S. Development status of high temperature superconducting cable[J]. High Voltage Apparatus,2011, 47(7):80-85.
    [28] Ramakrishnan T V. Ginzburg-Landau like theory of high temperature superconductivity in the cuprates:emergent d-wave order[J]. International Journal of Modern Physics B, 2012, 26(10):1230005-1230032.
    [29] Kato M, Sato O. Magnetic flux structures of finite superconducting networks[J]. Superconductor Science&Technology, 2013, 26(3):033001-033027.
    [30] Tkachov G, Hankiewicz E M. Spin-helical transport in normal and superconducting topological insulators[J]. Physica Status Solidi B-Basic Solid State Physics, 2013, 250(2):215-232.
    [31] Suderow H, Guillamon I, Rodrigo J G, et al. Imaging superconducting vortex cores and lattices with a scanning tunneling microscope[J]. Superconductor Science&Technology,2014, 27(6):063001-063033.
    [32] Hosono H, Tanabe K, Takayama-Muromachi E, et al. Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides[J]. Science and Technology of Advanced Materials, 2015, 16(3):033503-033590.
    [33] Li C, Wang X, Wang J, et al. The high temperature superconducting filters and its application progress[J]. Chinese Science Bulletin, 2017, 62(34):4010-4024.
    [34] Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8):17033-17048.
    [35] Wang H, Li X, Gao G, et al. Hydrogen-rich superconductors at high pressures[J]. Wiley Interdisciplinary Reviews-Computational Molecular Science, 2018, 8(1):1330-1343.
    [36]刘新华,高士秋,李静海.循环流化床中颗粒团聚物性质的PDPA测量[J].化工学报, 2004, 55(4):555-562.Liu X H, Gao S Q, Li J H. Characteristics of particle clusters in gas-solids circulating fluidized beds by using PDPA[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(4):555-562.
    [37]王利民,邱小平,李静海.气固两相流介尺度LBM-DEM模型[J].计算力学学报, 2015, 32(5):685-692.Wang L M, Qiu X P, Li J H. Mesoscale LBM-DEM model for gassolid two-phase flow[J]. Chinese Journal of Computational Mechanics, 2015, 32(5):685-692.
    [38] Li J. Mesoscales:the path to transdisciplinarity[J]. Chemical Engineering Journal, 2015, 277:112-115.
    [39]杨宁,李静海.化学工程中的介尺度科学与虚拟过程工程:分析与展望[J].化工学报, 2014, 65(7):2403-2409.Yang N, Li J H. Mesoscience in chemical engineering and virtual process engineering:analysis and perspective[J]. CIESC Journal,2014, 65(7):2403-2409.
    [40]欧阳洁,李静海,孙国刚,等.气固流态化动态特征的模拟[J].应用基础与工程科学学报, 2002, 10(4):338-346.Ouyang J, Li J H, Sun G G, et al. Simulation of dynamic characteristics for gas-solid fluidization[J]. Journal of Basic Science and Engineering, 2002, 10(4):338-346.
    [41] Li J. Exploring the logic and landscape of the knowledge system:multilevel structures, each multiscaled with complexity at the mesoscale[J]. Engineering, 2016, 2(3):276-285.
    [42]郭慕孙,化学工程的多层次结构[J].化学工程, 2007, 35(10):75-78.Guo M S. Hierarchical structure of chemical engineering[J].Chemical Engineering(China), 2007, 35(10):75-78.
    [43]李洪钟,郭慕孙.回眸与展望流态化科学与技术[J].化工学报,2013, 64(1):52-62.Li H Z, Kwauk M. Review and prospect of fluidization science and technology[J]. CIESC Journal, 2013, 64(1):52-62.
    [44] Schgerl K. Biofluidization:application of the fluidization technique in biotechnology[J]. Canadian Journal of Chemical Engineering, 2010, 67(2):178-184.
    [45]徐骥,卢利强,葛蔚,等.基于EMMS范式的离散模拟及其化工应用[J].化工学报, 2016, 67(1):14-26.Xu J, Lu L Q, Ge W, et al. Discrete simulation based on EMMS paradigm and its applications in chemical engineering[J]. CIESC Journal, 2016, 67(1):14-26.
    [46]刘雅宁,鲁波娜,卢利强,等.基于EMMS模型的大型催化裂化装置再生器气固分布数值模拟[J].化工学报, 2015, 66(8):2911-2919.Liu Y N, Lu B N, Lu L Q, et al. EMMS-based numerical simulation on gas and solids distribution in large-scale FCC regenerators[J]. CIESC Journal, 2015, 66(8):2911-2919.
    [47] Li J, Ge W, Wang W, et al. From Multiscale Modeling to MesoScience[M]. New York:Springer, 2013.
    [48] Sawada H, Okada M, Nakagawa S. Measurement of latent heat of melting of thermal storage materials for dynamic type ice thermal storage[J]. Transactions of the Japan Society of Refrigerating&Air Conditioning Engineers, 2011, 20(2):205-214.
    [49] Gesari S, Irigoyen B, Juan A. An experiment on the liquid-vapor equilibrium for water[J]. American Journal of Physics, 1996, 64(64):1165-1168.
    [50] Andrews T.The Bakerian lecture:on the continuity of the gaseous and liquid states of matter[J]. Philosophical Transactions of the Royal Society of London, 1869, 159:575-590.
    [51] Li J. Particle-fluid Two-phase Flow—the Energy-Minimization Multi-scale Method[M]. Beijing:Metallurgical Industry Press,1994:1-200.
    [52] Balescu R. Equilibrium and Nonequilibrium Statistical Mechanics[M]. New York:Wiley, 1975:570-574.
    [53] Mayer J E, Mayer M G. Statistical Mechanics[M]. New York:Wiley, 1977:29-49.
    [54] Pathria R K. Statistical Mechanics[M]. 2 ed. New York:Academic Press, 1996:57-69.
    [55] Sethna J P, Coppersmith S. Statistical Mechanics:Entropy, Order Parameters[M]. Oxford:Oxford University Press, 2006:429-430.
    [56] Li J, Ge W, Wang W, et al. Meso-scale Modeling:the EMMS Model for Gas-solid Systems[M]. New York:Springer, 2013:47-89.
    [57] Li J, Huang W. Towards Mesoscience:the Principle of Compromise in Competition[M]. New York:Springer, 2014:1-76.
    [58] Li J, Ge W, Wang W, et al. Focusing on mesoscales:from the energy-minimization multiscale model to mesoscience[J]. Current Opinion in Chemical Engineering, 2016, 13(S1):10-23.
    [59] Li J, Ge W, Wang W, et al. Focusing on the meso-scales of multiscale phenomena-in search for a new paradigm in chemical engineering[J]. Particuology, 2010, 8(6):634-639.
    [60] Li J, Huang W, Ge W. Multilevel and multiscale PSE:challenges and opportunities at mesoscales[C]//Eden M R, Ierapetritou M G,Towler G P.Computer Aided Chemical Engineering. Amsterdam:Elsevier, 2018:11-19.
    [61]赵凯华,罗蔚茵.新概念物理教程:热学[M]北京:高等教育出版社, 2005:69.Zhao K H, Luo W Y. New Concept Physics Course:Thermodynamics[M]. Beijing:Higher Education Press, 2005:69.
    [62] Paolantoni M, Lago N F, Albert M, et al. Tetrahedral ordering in water:Raman profiles and their temperature dependence[J].Journal of Physical Chemistry A, 2009, 113(52):15100.
    [63] Tokushima T, Harada Y, Takahashi O, et al. High resolution Xray emission spectroscopy of liquid water:the observation of two structural motifs[J]. Chemical Physics Letters, 2008, 460(4):387-400.
    [64] Tokushima T, Harada Y, Horikawa Y, et al. High resolution X-ray emission spectroscopy of water and its assignment based on two structural motifs[J]. Journal of Electron Spectroscopy&Related Phenomena, 2010, 177(2):192-205.
    [65] Wikfeldt K T. Structure, dynamics and thermodynamics of liquid water:insights from molecular simulations[D]. Stockholm:Stockholm University, 2011.
    [66] Wikfeldt K T, Nilsson A, Pettersson L G. Spatially inhomogeneous bimodal inherent structure of simulated liquid water[J]. Physical Chemistry Chemical Physics, 2011, 13(44):19918-19924.
    [67] Frenkel D, Smit B. Understanding molecular simulation:from algorithms to applications[M]. 2 ed. New York:Academic Press,1996:63-105.
    [68] Patashinski A Z, Mitus A C, Ratner M A. Towards understanding the local structure of liquids[J]. Physics Reports, 1997, 288(1-6):409-434.
    [69] Müller I. Entropy and energy—a universal competition[J].Entropy, 2008, 10(4):462-476.
    [70] Li J H, Huang W L, Chen J H, et al. Mesoscience based on the EMMS principle of compromise in competition[J]. Chemical Engineering Journal, 2018, 333:327-335.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.