激光冷却SH~–阴离子的理论研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theoretical study of laser-cooled SH~– anion
  • 作者:万明杰 ; 李松 ; 金成国 ; 罗华锋
  • 英文作者:Wan Ming-Jie;Li Song;Jin Cheng-Guo;Luo Hua-Feng;Computational Physics Key Laboratory of Sichuan Province, Yibin University;School of Physics and Optoelectronic Engineering, Yangtze University;College of Chemistry and Chemical Engineering, Yibin University;
  • 关键词:自旋-轨道耦合效应 ; 弗兰克-康登因子 ; 自发辐射寿命 ; 激光冷却
  • 英文关键词:spin-orbit coupling;;Franck-Condon factors;;spontaneous radiative lifetimes;;laser cooling
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:宜宾学院计算物理四川省高等学校重点实验室;长江大学物理与光电工程学院;宜宾学院化学与工程学院;
  • 出版日期:2019-03-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金理论物理专项(批准号:11647075,11747071);; 宜宾学院计算物理四川省高等学校重点实验室开放课题基金(批准号:JSWL2014KF05)资助的课题~~
  • 语种:中文;
  • 页:WLXB201906009
  • 页数:7
  • CN:06
  • ISSN:11-1958/O4
  • 分类号:73-79
摘要
本文采用多组态相互作用及Davidson修正方法和全电子基组计算了SH~-阴离子的X~1∑~+,a~3∏和A~1∏态的势能曲线、电偶极矩和跃迁偶极矩.计算的光谱常数与实验值及已有的理论值符合得很好.在计算中考虑了自旋-轨道耦合效应.计算得到a~3∏_1(v'=0)?X~1∑_(0+)~+(v"=0)和A~1∏_1(v'=0)?X~1Σ_(0+)~+(v"=0)跃迁具有高对角分布的弗兰克-康登因子,分别为0.9990和0.9999;计算得到a~3∏_1和A~1∏_1态的自发辐射寿命分别为1.472和0.188 ms.A~1∏_1?X~1∑_(0+)~+跃迁存在中间态a~3∏_(0+)和a~3∏_1,但中间态对激光冷却SH~-阴离子的影响可以忽略.分别利用a~3∏_1(v'=0)? X~1∑_(0+)~+(v"=0)和A~1∏_1(v'=0)? X~1∑_(0+)~+(v"=0)跃迁构建了准闭合的能级系统,冷却所需的激光波长分别为492.27和478.57 nm.最后预测了激光冷却SH~-阴离子能达到的多普勒温度和反冲温度.这些结果为进一步实验提供了理论参数.
        The potential energy curves, dipole moments, and transition dipole moments for the X~1Σ~+, a~3∏, and A~1∏electronic state of sulfur hydride anion(SH) are calculated by using the multi-reference configuration interaction method plus Davidson corrections(MRCI+Q) with all-electron basis set. The scalar relativistic corrections and core-valence correlations are also considered. In the CASSCF calculations, H(1 s) and S(3 s3 p4 s)shells are chosen as active space, and the rest orbitals S(1 s2 s2 p) as closed-shell. In the MRCI+Q calculations,the S(1 s2 s2 p) shells are used for the core-valence correlation. Spectroscopic parameters, Einstein spontaneous emission coefficient, Franck-Condon factors, and spontaneous radiative lifetimes are obtained by using Le Roy's LEVEL8.0 program. The calculated spectroscopic parameters are in good agreement with available experimental data and theoretical values. Spin-orbit coupling(SOC) effects are evaluated with Breit-Pauli operators at the MRCI+Q level. Transition dipole moments(TDMs) for the A~1∏_1?X~1∑_(0+)~+,a~3∏_(0+)?X~1∑_(0+)~+,a~3∏_1?X~1∑_(0+)~+,A~1∏_1?a~3∏_(0+) and A~1∏_1?a~3∏_1 transitions are also calculated. The strength for the A1~1∏_1?X~1∑_(0+)~+ is the strongest in these five transitions, the value of TDM at Re is-1.3636 D. We find that the value of TDM for the a~3∏~1?X~1∑_(0+)~+ transition at Re is 0.5269 D. Therefore, this transition must be taken into account to build the scheme of laser-cooled SH~-anion. Highly diagonally distributed Franck-Condon factor f_(00) for the a~3∏_1(v'=0)?X~1∑_(0+)~+(v "=0) transition is 0.9990 and the value for the A~1∏_1(v'=0)? X~1∑_(0+)~+(v" =0)transition is 0.9999. Spontaneous radiative lifetimes of τ(a~3∏_1) = 1.472 μs and τ(A~1∏_1) = 0.188 μs are obtained, which can ensure that laser cools SH~-anion rapidly. To drive the a~3∏_1?X~1∑_(0+)~+ and A~1∏_1?X~1∑_(0+)~+transitions, just one laser wavelength is required. The wavelengths are 492.27 nm and 478.57 nm for two transitions, respectively. Notably, the influences of the intervening states a~3∏_1 and a~3∏_(0+) on the A~1∏_1? X~1∑_(0+)~+ transition are small enough to implement a laser cooling project A spin-forbidden transition and a three-electronic-level transition optical scheme of laser-cooled SH~-anion are constructed, respectively. In addition, the Doppler temperatures and recoil temperatures for the a~3∏_1?X~1∑_(0+)~+ and A~1∏_1? X~1∑_(0+)~+transitions of laser-cooled SH anion are also obtained, respectively.
引文
[1] Shuman E S, Barry J F, DeMille D 2010 Nature 467 820
    [2] Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A89 053416
    [3] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J2013 Phys. Rev. Lett. 110
    [4] Zhang Y G, Zhang H, Dou G, Xu J G 2017 Acta Phys. Sin.66 233101(in Chinese)[张云光,张华,窦戈,徐建刚2017物理学报66 233101]
    [5] Gao Y, Gao T 2014 Phys. Rev. A 90 052506
    [6] Wan M, Shao J, Huang D, Jin C, Yu Y, Wang F 2015 Phys.Chem. Chem. Phys. 17 26731
    [7] Wan M, Shao J, Gao Y, Huang D, Yang J, Cao Q, Jin C,Wang F 2015 J. Chem. Phys. 143 024302
    [8] Gao Y, Gao T 2015 Phys. Chem. Chem. Phys. 17 10830
    [9] Li Y C, Meng T F, Li C L, et al. 2017 Acta Phys. Sin. 66163101(in Chinese)[李亚超,孟腾飞,李传亮等2017物理学报66 163101]
    [10] Zhang Q, Yang C, Wang M, Ma X, Liu W 2017 Spectrochim.Acta, Part A 182 130
    [11] Zhang Q, Yang C, Wang M, Ma X, Liu W 2017 Spectrochim.Acta, Part A 185 365
    [12] Wan M, Huang D, Yu Y, Zhang Y 2017 Phys. Chem. Chem.Phys. 19 27360
    [13] Steiner B 1968 J. Chem. Phys. 49 5097
    [14] Breyer F, Frey P, Hotop H 1981 Z. Phys. 300 7
    [15] Janousek B K, Brauman J I 1981 Phys. Rev. A 23 1673
    [16] Cade P 1967 J. Chem. Phys. 47 2390
    [17] Rosmus P, Meyer W 1978 J. Chem. Phys. 69 2745
    [18] Senekowitsch J, Werner H J, Rosmus P, Reinsch E A, Oneil S V 1985 J. Chem. Phys. 83 4661
    [19] Vamhindi B S D R, Nsangou M 2016 Mol. Phys. 114 2204
    [20] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
    [21] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514
    [22] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 861
    [23] Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053
    [24] Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259
    [25] Douglas M, Kroll N M 1974 Ann. Phys. 82 89
    [26] Hess B A 1986 Phys. Rev. A 33 3742
    [27] Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823
    [28] Werner H J, Knowles P J, Lindh R, et al. MOLPRO, version2010.1, a package of ab initio programs, 2010, see http://www.molpro.net[2018-11-15]
    [29] Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 11710548
    [30] Dunning Jr T H 1989 J. Chem. Phys. 90 1007
    [31] Murrell J N, Sorbie K S. 1974 J Chem. Soc., Faraday Trans.70 1552
    [32] Le Roy R J Level 8.0:A Computer Program for Solving the Radial Schrodinger Equation for Bound and Quasibound Levels(Waterloo:University of Waterloo)Chemical Physics Research Report CP-663
    [33] Lykke K R, Murray K K, Lineberger W C 1991 Rhys. Rev. A43 6104
    [34] Hotop H, Lineberger W C 1985 J. Phys. Chem. Ref. Data 14731
    [35] Moore C E 1971 Atomic Energy Levels(Vol. 1)(Washington,DC:National Bureau of Standards Publications)p181
    [36] Cohen-Tannoudji C N 1998 Rev. Phys. Mod. 70 707
    [37] Kobayashi J, Aikawa K, Oasa K, Inouye S 2014 Phys. Rev. A89 021401
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.