Entropy Evolution in the Interior Volume of a Charged f(R) Black Hole
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Entropy Evolution in the Interior Volume of a Charged f(R) Black Hole
  • 作者:Shad ; Ali ; 王鑫洋 ; 刘文彪
  • 英文作者:Shad Ali;Xin-Yang Wang;Wen-Biao Liu;Department of Physics, Beijing Normal University;
  • 英文关键词:f(R) black hole;;interior volume;;Hawking radiation;;Bekenstein-Hawking entropy
  • 中文刊名:CITP
  • 英文刊名:理论物理(英文版)
  • 机构:Department of Physics, Beijing Normal University;
  • 出版日期:2019-06-01
  • 出版单位:Communications in Theoretical Physics
  • 年:2019
  • 期:v.71
  • 基金:Supported by the National Natural Science Foundation of China under Grant No.11235003
  • 语种:英文;
  • 页:CITP201906013
  • 页数:5
  • CN:06
  • ISSN:11-2592/O3
  • 分类号:94-98
摘要
Based on the 4-dimensional black hole solution of f(R) theory coupled to a nonlinear Maxwell field, we calculate the interior volume of a charged f(R) black hole using the method proposed by Christodoulou and Rovelli.Considering massless scalar field in the interior volume and Hawking radiation carrying only energy, we calculate the entropy of the scalar field inside a charged f(R) black hole and investigate the evolution of the entropy under Hawking radiation. In the meantime, the evolution of the Bekenstein-Hawking entropy under Hawking radiation has also been calculated. Based on these results, the proportional relation is obtained between the evolution of the scalar field entropy and the evolution of Bekenstein-Hawking entropy under Hawking radiation. According to the result, we investigate and discuss how the modified coefficient b in f(R) gravity theory affects the evolution relation between the two types of entropy. It is shown that the radiation rate for Hawking radiation of a charged f(R) black hole can increase with the modified coefficient b.
        Based on the 4-dimensional black hole solution of f(R) theory coupled to a nonlinear Maxwell field, we calculate the interior volume of a charged f(R) black hole using the method proposed by Christodoulou and Rovelli.Considering massless scalar field in the interior volume and Hawking radiation carrying only energy, we calculate the entropy of the scalar field inside a charged f(R) black hole and investigate the evolution of the entropy under Hawking radiation. In the meantime, the evolution of the Bekenstein-Hawking entropy under Hawking radiation has also been calculated. Based on these results, the proportional relation is obtained between the evolution of the scalar field entropy and the evolution of Bekenstein-Hawking entropy under Hawking radiation. According to the result, we investigate and discuss how the modified coefficient b in f(R) gravity theory affects the evolution relation between the two types of entropy. It is shown that the radiation rate for Hawking radiation of a charged f(R) black hole can increase with the modified coefficient b.
引文
[1]M.Christodoulou and C.Rovelli,Phys.Rev.D 91(2015)064046,doi:10.1103/PhysRevD.91.064046[arXiv:1411.2854[gr-qc]].
    [2]I.Bengtsson and E.Jakobsson,Mod.Phys.Lett.A 30(2015)1550103,doi:10.1142/S0217732315501035[arXiv:1502.01907[gr-qc]].
    [3]Y.C.Ong,Gen.Rel.Grav.47(2015)88,doi:10.1007/s10714-015-1929-x[arXiv:1503.08245[gr-qc]].
    [4]D.N.Page,Phys.Rev.Lett.71(1993)3743,doi:10.1103/PhysRevLett.71.3743[hep-th/9306083].
    [5]D.Marolf,Rept.Prog.Phys.80(2017)092001,doi:10.1088/1361-6633/aa77cc[arXiv:1703.02143[gr-qc]].
    [6]T.Jacobson,D.Marolf,and C.Rovelli,Int.J.Theor.Phys.44(2005)1807,doi:10.1007/s10773-005-8896-z[hep-th/0501103].
    [7]B.Zhang,Phys.Rev.D 92(2015)081501,doi:10.1103/PhysRevD.92.081501[arXiv:1510.02182[gr-qc]].
    [8]J.Z.Yang and W.B.Liu,Phys.Lett.B 782(2018)372,doi:10.1016/j.physletb.2018.05.050.
    [9]S.Z.Han,J.Z.Yang,X.Y.Wang,and W.B.Liu,Int.J.Theor.Phys.57(2018)3429,doi:10.1007/s10773-018-3856-6.
    [10]S.Ali,X.Y.Wang,and W.B.Liu,Int.J.Mod.Phys.A33(2018)1850159,doi:10.1142/S0217751X18501592.
    [11]X.Y.Wang,J.Jiang and W.B.Liu,Class.Quant.Grav.35(2018)215002,doi:10.1088/1361-6382/aae276[arXiv:1803.09649[gr-qc]].
    [12]A.Sheykhi,Phys.Rev.D 86(2012)024013,doi:10.1103/PhysRevD.86.024013[arXiv:1209.2960[hep-th]].
    [13]S.Nojiri and S.D.Odintsov,Phys.Rev.D 68(2003)123512,doi:10.1103/PhysRevD.68.123512[hepth/0307288].
    [14]K.Atazadeh,M.Farhoudi,and H.R.Sepangi,Phys.Lett.B 660(2008)275,doi:10.1016/j.physletb.2007.12.057[arXiv:0801.1398[gr-qc]].
    [15]T.Moon,Y.S.Myung,and E.J.Son,Gen.Rel.Grav.43(2011)3079,doi:10.1007/s10714-011-1225-3[arXiv:1101.1153[gr-qc]].
    [16]B.Zhang,Q.Y.Cai,L.You,and M.S.Zhan,Phys.Lett.B 675(2009)98,doi:10.1016/j.physletb.2009.03.082[arXiv:0903.0893[hep-th]].
    [17]B.Zhang,Q.Y.Cai,M.S.Zhan,and L.You,Int.J.Mod.Phys.D 22(2013)1341014,doi:10.1142/S0218271813410149[arXiv:1305.6341[gr-qc]].
    [18]L.E.Parker and D.Toms,Quantum Field Theory in Curved Spacetime:Quantized Field and Gravity,Cambridge University Press,Cambridge(2009).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.