昆虫非遗传多型性研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances on polyphenism in insects
  • 作者:薛宪词 ; 于黎
  • 英文作者:Xianci Xue;Li Yu;State Key Laboratory for Conservation and Ultilizition of Bio-Resources in Yunnan, Yunnan University;
  • 关键词:非遗传多型性 ; 昆虫 ; 环境因素 ; 分子机制
  • 英文关键词:polyphenism;;insect;;environmental factors;;molecular mechanism
  • 中文刊名:YCZZ
  • 英文刊名:Hereditas
  • 机构:云南大学云南生物资源保护与利用国家重点实验室;
  • 出版日期:2017-08-23 09:21
  • 出版单位:遗传
  • 年:2017
  • 期:v.39
  • 基金:中组部青年拔尖人才支持计划项目资助~~
  • 语种:中文;
  • 页:YCZZ201709004
  • 页数:12
  • CN:09
  • ISSN:11-1913/R
  • 分类号:32-43
摘要
非遗传多型性是指同一基因型或同一基因组通过外界环境诱导可产生两种或者多种不连续表型的现象。该现象在昆虫中已有报道,如变态、季节性非遗传多型、社会性昆虫的等级制等。昆虫通过非遗传多型性做出应答,通过表型改变来适应环境并利用周围环境物质以达到躲避天敌从而进行生存繁衍的目的。因此,非遗传多型性是昆虫种类繁多、数量庞大的主要因素之一。近几十年来,非遗传多型性日益受到广泛关注,从最初对现象的描述,到诱导该现象产生的可能因素的实验验证,至目前大数据时代下利用二代测序技术、基因敲除和RNA干扰等技术揭示其分子机制。本文对近年来非遗传多型性在昆虫中的研究进展进行了总结,并对未来的趋势进行了展望。
        Polyphenism denotes that one genome produces two or more distinct phenotypes due to environmental inductions. Many cases have been reported in insects, for example, metamorphosis, seasonal polyphenism, the caste of eusocial insects and so on. Polyphenism is one of the most important reasons for insects to survive and thrive, because insects can adapt and use the environmental cues around them in order to avoid predators and reproduce by changing their phenotypes. Polyphenism has received growing attentions, ranging from the earlier description of this phenomenon to the exploration of possible inducing factors. With the recent advent of the genomic era, more and more studies based on next generation sequencing, gene knockout and RNA interference have been reported to reveal the molecular mechanism of polyphenism. In this review, we summarize the progresses of the polyphenism in insects and envision prospects of future researches.
引文
[1]Simpson SJ,Sword GA,Lo N.Polyphenism in insects.Curr Biol,2011,21(18):R738–R749.
    [2]Cridge AG,Leask MP,Duncan EJ,Dearden PK.What do studies of insect polyphenisms tell us about nutritionally-triggered epigenomic changes and their consequences?Nutrients,2015,7(3):1787–1797.
    [3]Corona M,Libbrecht R,Wheeler DE.Molecular mechanisms of phenotypic plasticity in social insects.Curr Opin Insect Sci,2016,13:55–60.
    [4]Suzuki Y,Nijhout HF.Evolution of a polyphenism by genetic accommodation.Science,2006,311(5761):650–652.
    [5]Song HJ,Liu T,Liu WL,Shen JM,Wang XQ.Study and prospect of insects polymorphism.J.Shanxi Agric.Sci.,2009,37(12):71–74.宋红军,刘婷,刘晚兰,申俊苗,王小青.昆虫多型现象研究及展望.山西农业科学,2009,37(12):71–74.
    [6]Nijhout HF.Development and evolution of adaptive polyphenisms.Evol Dev,2003,5(1):9–18.
    [7]Ren Q.Transgenerational effects of gregarious and solitary phase transitions in the Locusta migratoria[D].Wuhan:Huazhong Agricultural University,2013.任强.飞蝗散居型-群居型转变的跨代遗传效应[学位论文].武汉:华中农业大学,2013.
    [8]Weismann A.Studien zur Descendenz-Theorie:I.Ueber den Saison-Dimorphismus der Schmetterlinge.Leipzig:Engelmann,1875.
    [9]Poulton EB.The Colours of Animals,Their Meaning and Use,Especially Considered in the Case of Insects.London:Kegan Paul,1890.
    [10]Woltereck R.Weitere experimentelle untersuchungen uber artveranderung,speziell uber das wesen quantitativer artunterschiede bei Daphniden.Verh Dtsch Zool Ges,1909:110–172.
    [11]Mayr E.Animal Species and Evolution.Cambridge:Belknap Press of Harvard University Press,1963.
    [12]Greene E.A diet-induced developmental polymorphism in a caterpillar.Science,1989,243(4891):643–646.
    [13]Greene E,Canfield M,Ehmer A,Whitman DW,Ananthakrishnan TN.Developmental flexibility,phenotypic plasticity,and host plants:a case study with Nemoria caterpillars.Phenotypic Plasticity of Insects:Mechanisms and Consequences,Enfield:Science Publishers,2009:135–146.
    [14]Brakefield PM,Frankino WA,Whitman DW,Ananthakrishnan TN.Polyphenisms in Lepidoptera:multidisciplinary approaches to studies of evolution.Phenotypic Plasticity in Insects:Mechanisms and Consequences,Plymouth:Science Publishers,2009:337–368.
    [15]Moran NA.The evolution of aphid life cycles.Annu Rev Ecol Syst,1992,37:321–348.
    [16]Dixon AFG.Aphid Ecology:An Optimisation Approach.London:Chapman and Hall,1998.
    [17]Lambers DHR.Polymorphism in Aphididae.Annu Rev Entomol,1966,11:47–78.
    [18]Smith MAH,Mac Kay PA.Genetic variation in male alary dimorphism in populations of pea aphid,Acyrthosiphon pisum.Entomol Exp Appl,1989,51(2):125–132.
    [19]Simpson SJ,Sword GA.Locusts.Curr Biol,2008,18(9):R364–R366.
    [20]Pener MP,Simpson SJ.Locust phase polyphenism:an update.Adv Insect Physiol,2009,36:1–272.
    [21]Simpson SJ,Sword GA.Phase polyphenism in locusts:mechanisms,population consequences,adaptive significance and evolution.Phenotypic Plasticity of Insects:Mechanisms and Consequences,Enfield:Science Publishers,2009:147–189.
    [22]Ayali A,Yerushalmi Y.Locust research in the age of model organisms:introduction to the Special issue in honor of M.P.Pener's 80th birthday.J Insect Physiol,2010,56(8):831–833.
    [23]Corona M,Estrada E,Zurita M.Differential expression of mitochondrial genes between queens and workers during caste determination in the honeybee Apis mellifera.J Exp Biol,1999,202:929–938.
    [24]Pereboom JJM,Jordan WC,Sumner S,Hammond RL,Bourke AFG.Differential gene expression in queenworker caste determination in bumble-bees.Proc R Soc B:Biol Sci,2005,272(1568):1145–1152.
    [25]Wurm Y,Wang J,Riba-Grognuz O,Corona M,Nygaard S,Hunt BG,Ingram KK,Falquet L,Nipitwattanaphon M,Gotzek D,Michiel B,Oettler J,Comtesse F,Shih CJ,Wu WJ,Yang CC,Thomas J,Beaudoing E,Pradervand S,Flegel V,Cook ED,Fabbretti R,Stockinger H,Long L,Farmerie WG,Oakey J,Boomsma JJ,Pamilo P,Yi SV,Heinze J,Goodisman MAD,Farinelli L,Harshman K,Hulo N,Cerutti L,Xenario I,Shoemaker D,Keller L.The genome of the fire ant Solenopsis invicta.Proc Natl Acad Sci USA,2011,108(14):5679–5684.
    [26]Bonasio R,Li QY,Lian JM,Mutti NS,Jin LJ,Zhao HM,Zhang P,Wen P,Xiang H,Ding Y,Jin ZH,Shen SS,Wang ZJ,Wang W,Wang J,Berger SLJ,Liebig J,Zhang GJ,Reinberg D.Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator.Curr Biol,2012,22(19):1755–1764.
    [27]Terrapon N,Li C,Robertson HM,Ji L,Meng XH,Booth W,Chen ZS,Childers CP,Glastad KM,Gokhale K,Gowin J,Gronenberg W,Hermansen RA,Hu HF,Hunt BG,Huylmans AK,Khalil SMS,Mitchell RD,Munoz-Torres MC,Mustard JA,Pan HL,Reese JT,Scharf ME,Sun FM,Vogel H,Xiao J,Yang W,Yang ZK,Yang ZQ,Zhou JJ,Zhu JW,Brent CS,Elsik CG,Goodisman MAD,Liberles DA,Roe RM,Vargo EL,Vilcinskas A,Wang J,Bornberg-Bauer BE,Korb J,Zhang GJ,Liebig J.Molecular traces of alternative social organization in a termite genome.Nat Commun,2014,5:3636.
    [28]Suryanarayanan S,Hermanson JC,Jeanne RL.A mechanical signal biases caste development in a social wasp.Curr Biol,2011,21(3):231–235.
    [29]Shuel RW,Dixon SE.The early establishment of dimorphism in the female honeybee,Apis mellifera L.Insectes Soc,1960,7(3):265–282.
    [30]Haydak MH.Larval food and development of castes in the honeybee.J Econ Entomol,1943,36(5):778–792.
    [31]Kamakura M.Royalactin induces queen differentiation in honeybees.Nature,2011,473(7348):478–483.
    [32]Hodin J.She shapes events as they come:plasticity in female insect reproduction.In:Whitman DW,Ananthakrishnan TN,eds.Phenotypic Plasticity of Insects:Mechanisms and Consequences.Enfield:Science Publishers Inc,2009:423–521.
    [33]Noirot C,Pasteels JM.Ontogenetic development and evolution of the worker caste in termites.Experientia,1987,43(8):851–860.
    [34]Niva CC,Takeda M.Effects of photoperiod,temperature and melatonin on nymphal development,polyphenism and reproduction in Halyomorpha halys(Heteroptera:Pentatomidae).Zoolog Sci,2003,20(8):963–970.
    [35]Suzuki Y,Nijhout HF.Constraint and developmental dissociation of phenotypic integration in a genetically accommodated trait.Evol Dev,2008,10(6):690–699.
    [36]George J,Verma KK.Polymorphism in Callosobruchus maculatus F.new dimensions.Russian Entomol J,1994,3:93–107.
    [37]George J,Verma KK.Variability in Callosobruchus chinensis L.and evolution of polymorphism in Callosobruchus(Coleoptera,Bruchidae).Russian Entomol J,1997,6:41–48.
    [38]George J,Verma KK.Laboratory rearing of the‘active’phase of Callosobruchus maculatus F.(Coleoptera,Bruchidae).Indian J Exp Biol,1999,37:584–588.
    [39]Verma KK.Polyphenism in insects and the juvenile hormone.J Biosci,2007,32(2):415–420.
    [40]Yamamoto K,Tsujimura Y,Kometani M,Kitazawa C,Islam ATMF,Yamanaka A.Diapause pupal color diphenism induced by temperature and humidity conditions in Byasa alcinous(Lepidoptera:Papilionidae).J Insect Physiol,2011,57(7):930–934.
    [41]Barnes AI,Siva-Jothy MT.Density-dependent prophylaxis in the mealworm beetle Tenebrio molitor L.(Coleoptera:Tenebrionidae):cuticular melanization is an indicator of investment in immunity.Proc Biol Sci,2000,267(1439):177–182.
    [42]Noor MAF,Parnell RS,Grant BS.A reversible color polyphenism in American peppered moth(Biston betularia cognataria)Caterpillars.PLo S One,2008,3(9):e3142.
    [43]Pechá?ek P,Stella D,Keil P,Kleisner K.Environmental effects on the shape variation of male ultraviolet patterns in the Brimstone butterfly(Gonepteryx rhamni,Pieridae,Lepidoptera).Naturwissenschaften,2014,101(12):1055–1063.
    [44]Emlen DJ.Environmental control of horn length dimorphism in the beetle Onthophagus acuminatus(Coleoptera:Scarabaeidae).Proc Biol Sci,1994,256(1346):131–136.
    [45]Emlen DJ.Diet alters male horn allometry in the beetle Onthophagus acuminatus(Coleoptera:Scarabaeidae).Proc Biol Sci,1997,264(1381):567–574.
    [46]Hunt J,Simmons LW.Patterns of fluctuating asymmetry in beetle horns:an experimental examination of the honest signalling hypothesis.Behav Ecol Sociobiol,1997,41(2):109–114.
    [47]Hunt J,Simmons LW.The genetics of maternal care:direct and indirect genetic effects on phenotype in the dung beetle Onthophagus taurus.Proc Natl Acad Sci USA,2002,99(10):6828–6832.
    [48]Moczek AP.Horn polyphenism in the beetle Onthophagus taurus:larval diet quality and plasticity in parental investment determine adult body size and male horn morphology.Behav Ecol,1998,9(6):636–641.
    [49]Moczek AP.Allometric plasticity in a polyphenic beetle.Ecol Entomol,2002,27(1):58–67.
    [50]Moczek AP,Emlen DJ.Proximate determination of male horn dimorphism in the beetle Onthophagus Taurus(Coleoptera:Scarabaeidae).Evol Biol,1999,12(1):27–37.
    [51]Berens AJ,Hunt JH,Toth AL.Comparative transcriptomics of convergent evolution:different genes but conserved pathways underlie caste phenotypes across lineages of eusocial insects.Mol Bio Evol,2015,32(3):690–703.
    [52]De Azevedo SV,Hartfelder K.The insulin signaling pathway in honey bee(Apis mellifera)caste development differential expression of insulin-like peptides and insulin receptors in queen and worker larvae.J Insect Physiol,2008,54(6):1064–1071.
    [53]Patel A,Fondrk MK,Kaftanoglu O,Emore C,Hunt G,Frederick K,Amdam GV.The making of a queen:TOR pathway is a key player in diphenic caste development.PLo S One,2007,2(6):e509.
    [54]Greene E.Effect of light quality and larval diet on morph induction in the polymorphic caterpillar Nemoria arizonaria(Lepidoptera:Geometridae).Biol J Linn Soc Lond,1996,58(3):277–285.
    [55]Libbrecht L,Corona M,Wende F,Azevedo DO,Serr?o JE,Keller L.Interplay between insulin signaling,juvenile hormone,and vitellogenin regulates maternal effects on polyphenism in ants.Proc Natl Acad Sci USA,2013,110(27):11050–11055.
    [56]Asencot M,Lensky Y.The effect of sugars and juvenile hormone on the differentiation of the female honeybee larvae(Apismellifera L.)to queens.Life Sci,1976,18(7):693–699.
    [57]Fluri P,Wille H,Gerig L,Lüscher M.Juvenile hormone,vitellogenin and haemocyte composition in winter worker honeybees(Apis mellifera).Experimentia,1977,33(9):1240–1241.
    [58]Mutti NS,Dolezal AG,Wolschin F,Mutti JS,Gill KS,Amdam GV.IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate.J Exp Biol,2011,214(23):3977–3984.
    [59]Alvarado S,Rajakumar R,Abouheif E,Szyf M.Epigenetic variation in the Egfr gene generates quantitative variation in a complex trait in ants.Nat Commun,2015,6:9.
    [60]Patel A,Fondrk MK,Kaftanoglu O,Emore C,Hunt G,Frederick K,Amdam GV.The making of a queen:TOR pathway is a key player in diphenic caste development.PLo S One,2007,2(6):e509.
    [61]Wolschin F,Mutti NS,Amdam GV.Insulin receptor substrate influences female caste development in honeybees.Biol Lett,2011,7(1):112–115.
    [62]Wheeler DE,Buck N,Evans JD.Expression of insulin pathway genes during the period of caste determination in the honey bee,Apis mellifera.Insect Mol Biol,2006,15(5):597–602.
    [63]Lu HL,Pietrantonio PV.Insect insulin receptors:insights from sequence and caste expression analyses of two cloned hymenopteran insulin receptor c DNAs from the fire ant.Insect Mol Biol,2011,20(5):637–649.
    [64]Corona M,Libbrecht R,Wurm Y,Riba-Grognuz O,Studer RA,Keller L.Vitellogenin underwent subfunctionalization to acquire caste and behavioral specific expression in the harvester ant Pogonomyrmex barbatus.PLo S Genet,2013:9(8):e1003730.
    [65]Corona M,Velarde RA,Remolina S,Moran-Lauter A,Wang Y,Hughes KA,Robinson GE.Vitellogenin,juvenile hormone,insulin signaling,and queen honey bee longevity.Proc Natl Acad Sci USA,2007,104(17):7128–7133.
    [66]Wang Y,Azevedo SV,Hartfelder K,Amdam GV.Insulin-like peptides(Am ILP1 and Am ILP2)differentially affect female caste development in the honey bee(Apis mellifera L.).Exp Biol,2013,216(23):4347–4357.
    [67]Wheeler DE,Buck NA,Evans JD.Expression of insulin/insulin-like signalling and TOR pathway genes in honey bee caste determination.Insect Mol Biol,2014,23(1):113–121.
    [68]Saiki R,Gotoh H,Toga K,Miura T,Maekawa K.High juvenile hormone titre and abdominal activation of JH signalling may induce reproduction of termite neotenics.Insect Mol Biol,2015,24(4):432–441.
    [69]Klein A,Schultner E,Lowak H,Schrader L,Heinze J,Holman L,Oettler J.Evolution of social insect polyphenism facilitated by the sex differentiation cascade.PLo S Genet,2016,12(3):e1005952.
    [70]Feng M,Fang Y,Li J.Proteomic analysis of honeybee worker(Apis mellifera)hypopharyngeal gland development.BMC Genomics,2009,10:645.
    [71]Corona M,Libbrecht R,Wurm Y,Riba-Grognuz O,Studer RA,Keller L.Vitellogenin underwent subfunctionalization to acquire caste and behavioral specific expression in the harvester ant Pogonomyrmex barbatus.PLo S Genet,2013,9(8):e1003730.
    [72]Zhou X,Oi FM,Scharf ME.Social exploitation of hexamerin:RNAi reveals a major caste-regulatory factor in termites.Proc Natl Acad Sci USA,2006,103(12):4499–4504.
    [73]Foret S,Kucharski R,Pellegrini M,Feng S,Jacobsen SE,Robinson GE,Maleszka R.DNA methylation dy-namics,metabolic fluxes,gene splicing,and alternative phenotypes in honey bees.Proc Natl Acad Sci USA,2012,109(13):4968–4973.
    [74]Lyko F,Foret S,Kucharski R,Wolf S,Falckenhayn C,Maleszka R.The honey bee epigenomes:differential methylation of brain DNA in queens and workers.PLo S Biol,2010,8(1):e1000506.
    [75]Glastad KM,Hunt BG,Goodisman MAD.DNA methylation and chromatin organization in insects:insights from the ant Camponotus floridanus.Genome Biol Evol,2015,7(4):931–942.
    [76]Kucharski R,Maleszka J,Foret S,Maleszka R.Nutritional control of reproductive status in honeybees via DNA methylation.Science,2008,319(5871):1827–1830.
    [77]Herb BR,Wolschin F,Hansen KD,Aryee MJ,Langmead B,Irizarry R,Amdam GV,Feinberg AP.Reversible switching between epigenetic states in honeybee behavioral subcastes.Nat Neurosci,2012,15(10):1371–1373.
    [78]Patalano S,Vlasova A,Wyatt C,Ewels P,Camara F,Ferreira PG,Asher CL,Jurkowski TP,Segonds-Pichon A,Bachman M,González-Navarrete I,Minoche AE,Krueger F,Lowy E,Marcet-Houben M,Rodriguez-Ales JL,Nascimento FS,Balasubramanian S,Gabaldon T,Tarver JE,Andrews S,Himmelbauer H,Hughes WO,GuigóR,Reik W,Sumner S.Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies.Proc Natl Acad Sci USA,2015,112(45):13970–13975.
    [79]Ferreira PG,Patalano S,Chauhan R,Ffrench-Constant R,Gabaldon T,GuigóR,Sumner S.Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes.Genome Biol,2013,14(2):R20.
    [80]Kang L,Chen XY,Zhou Y,Liu BW,Zheng W,Li RQ,Wang J,Yu J.The analysis of large-scale gene expression correlated to the phase changes of the migratory locust.Proc Natl Acad Sci USA,2004,101(51):17611–17615.
    [81]Ma ZY,Yu J,Kang L.Locust DB:a relational database for the transcriptome and biology of the migratory locust(Locusta migratoria).BMC Genomics,2006,7:11.
    [82]Wang HS,Wang XH,Zhou CS,Huang LH,Zhang SF,Guo W,Kang L.c DNA cloning of heat shock proteins and their expression in the two phases of the migratory locust.Insect Mol Biol,2007,16(2):207–219.
    [83]Wei YY,Chen S,Yang PC,Ma ZY,Kang L.Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust.Genome Biol,2009,10:R6.
    [84]Guo W,Wang XH,Ma ZY,Xue L,Han JY,Yu D,Kang L.CSP and takeout genes modulate the switch between attraction and repulsion during behavioral phase change in the migratory locust.PLo S Genet,2011,7(2):e1001291.
    [85]Chen S,Yang PC,Jiang F,Wei YY,Ma ZY,Kang L.De novo analysis of transcriptome dynamics in the migratory locust during the development of phase traits.PLo S One,2010,5(12):e15633.
    [86]Ma ZY,Guo W,Guo XJ,Wang XH,Kang L.Modulation of behavioral phase changes of the migratory locust by the catecholamine metabolic pathway.Proc Natl Acad Sci USA,2011,108(10):3882–3887.
    [87]Yang ML,Wei YY,Jiang F,Wang YL,Guo XJ,He J,Kang L.Micro RNA-133 Inhibits behavioral aggregation by controlling dopamine synthesis in locusts.PLo S Genet,2014,10(2):e1004206.
    [88]He J,Chen QQ,Wei YY,Jiang F,Yang ML,Hao SG,Guo XJ,Chen DH,Kang L.Micro RNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts.Proc Natl Acad Sci USA,2016,113(3):584–589.
    [89]Wang YL,Yang ML,Jiang F,Zhang JZ,Kang L.Micro RNA-dependent development revealed by RNA interference-mediated gene silencing of Lm Dicer1 in the migratory locust.Insect Sci,2013,20(1):53–60.
    [90]Wang YL,Jiang F,Wang HM,Song TQ,Wei YY,Yang ML,Zhang JZ,Kang L.Evidence for the expression of abundant micro RNAs in the locust genome.Sci Rep,2015,5:13608.
    [91]Chen QQ,He J,Ma C,Yu D,Kang L.Syntaxin 1A modulates the sexual maturity rate and progeny egg size related to phase changes in locusts.Insect Biochem Mol Biol,2015,56:1–8.
    [92]Maeno K,Tanaka S.Artificial miniaturization causes eggs laid by crowd-reared(gregarious)desert locusts to produce green(solitarious)offspring in the desert locust,Schistocerca gregaria.J Insect Physiol,2009,55(9):849–854.
    [93]Tanaka S,Maeno K.Phase-related body-color polyphenism in hatchlings of the desert locust,Schistocerca gregaria:re-examination of the maternal and crowding effects.J Insect Physiol,2006,52(10):1054–1061.
    [94]Tanaka S,Maeno K.A review of maternal and embryonic control of phase-dependent progeny characteristics in the desert locust.J Insect Physiol,2010,56(8):911–918.
    [95]Cease AJ,Hao S,Kang L,Elser JJ,Harrison JF.Are color or high rearing density related to migratory polyphenism in the band-winged grasshopper,Oedaleus asiaticus?J Insect Physiol,2010,56(8):926–936.
    [96]Tanaka S,Harano KI,Nishide Y,Sugahara R.The mechanism controlling phenotypic plasticity of body color in the desert locust:some recent progress.Curr Opin Insect Sci,2016,17:10–15.
    [97]Wang YD,Yang PC,Cui F,Kang L.Altered immunity in crowded locust reduced fungal(Metarhizium anisopliae)pathogenesis.PLo S Pathog,2013,9(1):e1003102.
    [98]Wilson K,Thomas MB,Blanford S,Doggett M,Simpson SJ,Moore SL.Coping with crowds:density-dependent disease resistance in desert locusts.Proc Natl Acad Sci USA,2002,99(8):5471–5475.
    [99]Verlinden H,Badisco L,Marchal E,Van Wielendaele P,Broeck JV.Endocrinology of reproduction and phase transition in locusts.Gen Comp Endocrinol,2009,162(1):79–92.
    [100]Song J,Guo W,Jiang F,Kang L,Zhou S.Argonaute is indispensable for juvenile hormone mediated oogenesis in the migratory locust,Locusta migratoria.Insect Biochem Mol Biol,2013,43(9):879–887.
    [101]Badisco L,Huybrechts J,Simonet G,Verlinden H,Marchal E,Huybrechts R,Schoofs L,De Loof A,Broeck JV.Transcriptome analysis of the desert locust central nervous system:production and annotation of a Schistocerca gregaria EST database.PLo S One,2011,6(3):e17274.
    [102]Hou L,Jiang F,Yang PC,Wang XH,Kang L.Molecular characterization and expression profiles of neuropeptide precursors in the migratory locust.Insect Biochem Mol Biol,2015,63:63–71.
    [103]Sugahara R,Saeki S,Jouraku A,Shiotsuki T,Tanaka S.Knockdown of the corazonin gene reveals its critical role in the control of gregarious characteristics in the desert locust.J Insect Physiol,2015,79:80–87.
    [104]Wynant N,Santos D,Subramanyam SH,Verlinden H,Broeck JV.Drosha,Dicer-1 and Argonaute-1 in the desert locust:phylogenetic analyses,transcript profiling and regulation during phase transition and feeding.J Insect Physiol,2015,75:20–29.
    [105]Falckenhayn C,Boerjan B,Raddatz G,Frohme M,Schoofs L,Lyko F.Characterization of genome methylation patterns in the desert locust Schistocerca gregaria.J Exp Biol,2013,216(8):1423–1429.
    [106]Mallon EB,Amarasinghe HE,Ott SR.Acute and chronic gregarisation are associated with distinct DNA methylation fingerprints in desert locusts.Sci Rep,2016,6:35608.
    [107]Robinson KL,Tohidi-Esfahani D,Ponton F,Simpson SJ,Sword GA,Lo N.Alternative migratory locust phenotypes are associated with differences in the expression of genes encoding the methylation machinery.Insect Mol Biol,2016,25(2):105–115.
    [108]Emlen DJ,Hunt J,Simmons LW.Evolution of sexual dimorphism and male dimorphism in the expression of beetle horns:phylogenetic evidence for modularity,evolutionary lability,and constraint.Am Nat,2005,166(Suppl.4):S42–S68.
    [109]Emlen DJ,Marangelo J,Ball B,Cunningham CW.Diversity in the weapons of sexual selection:horn evolution in the beetle genus Onthophagus(Coleoptera:Scarabaeidae).Evolution,2005,59(5):1060–1084.
    [110]Moczek AP,Nijhout HF.Developmental mechanisms of threshold evolution in a polyphenic beetle.Evol Dev,2002,4(4):252–264.
    [111]Davis AK,Chi J,Bradley C,Altizer S.The redder the better:wing color predicts flight performance in monarch butterflies.PLo S One,2012,7(7):e41323.
    [112]Oostra V,de Jong MA,Invergo BM,Kesbeke F,Wende F,Brakefield PM,Zwaan BJ.Translating environmental gradients into discontinuous reaction norms via hormone signalling in a polyphenic butterfly.Proc Biol Sci,2011,278(1706):789–797.
    [113]Eisen JA.Genome Sequence of the pea aphid Acyrthosiphon pisum:the international aphid genomics consortium.PLo S Biol,2010,8(2):e1000313.
    [114]Ishikawa A,Ogawa K,Gotoh H,Walsh TK,Tagu D,Brisson JA,Rispe C,Jaubert-Possamai S,Kanbe T,Tsubota T,Shiotsuki T,Miura T.Juvenile hormone titre and related gene expression during the change of reproductive modes in the pea aphid.Insect Mol Biol,2012,21(1):49–60.
    [115]Ishikawa A,Gotoh H,Abe T,Miura T.Juvenile hormone titer and wing-morph differentiation in the vetch aphid Megoura crassicauda.J Insect Physiol,2013,59(4):444–449.
    [116]Yang XW,Liu XX,Xu XL,Li Z,Li YS,Song DY,Yu T,Zhu F,Zhang QW,Zhou X.Gene expression profiling in winged and wingless cotton aphids,Aphis gossypii(Hemiptera:Aphididae).Int J Biol Sci,2014,10(3):257–267.
    [117]Ishikawa A,Ishikawa Y,Okada Y,Miyazaki S,Miyakawa H,Koshikawa S,Brisson JA,Miura T.Screening of upregulated genes induced by high density in the vetch aphid Megoura crassicauda.J Exp Zool A Ecol Genet Physiol,2012,317(3):194–203.
    [118]Park KC,Hardie J.Functional specialisation and poly-phenism in aphid olfactory sensilla.J Insect Physiol,2002,48(5):527–535.
    [119]Rebijith KB,Asokan R,Hande HR,Kumar NKK,Krishna V,Vinutha J,Bakthavatsalam N.RNA interference of odorant-binding protein 2(OBP2)of the cotton aphid,Aphis gossypii(Glover),resulted in altered electrophysiological responses.Appl Biochem Biotechnol,2016,178(2):251–266.
    [120]Legeai F,Rizk G,Walsh T,Edwards O,Gordon K,Lavenier D,Leterme N,Méreau A,Nicolas J,Tagu D,Jaubert-Possamai S.Bioinformatic prediction,deep sequencing of micro RNAs and expression analysis during phenotypic plasticity in the pea aphid,Acyrthosiphon pisum.BMC Genomics,2010,11:281.
    [121]Li XR,Zhang FM,Coates B,Zhang YH,Zhou XG,Cheng DF.Comparative profiling of micro RNAs in the winged and wingless English grain aphid,Sitobion avenae(F.)(Homoptera:Aphididae).Sci Rep,2016,6:35668.
    [122]Walsh TK,Brisson JA,Robertson HM,Gordon K,Jaubert-Possamai S,Tagu D,Edwards OR.A functional DNA methylation system in the pea aphid,Acyrthosiphon pisum.Insect Mol Biol,2010,19(2):215–228.
    [123]Lin XD,Yao Y,Wang B,Lavine MD,Lavine LC.FOXO links wing form polyphenism and wound healing in the brown planthopper,Nilaparvata lugens.Insect Biochem Mol Biol,2015,70:24–31.
    [124]Lin XD,Yao Y,Wang B.Methoprene-tolerant(Met)and Krüpple-homologue 1(Kr-h1)are required for ovariole development and egg maturation in the brown plant hopper.Sci Rep,2015,5:18064.
    [125]Xu HJ,Xue J,Lu B,Zhang XC,Zhuo JC,He SF,Ma XF,Jiang YQ,Fan HW,Xu JY,Ye YX,Pan PL,Li Q,Bao YY,Nijhout HF,Zhang CX.Two insulin receptors determine alternative wing morphs in planthoppers.Nature,2015,519(7544):464–467.
    [126]Lin XD,Xu YL,Yao Y,Wang B,Lavine MD.Lavine LC.JNK signaling mediates wing form polymorphism in brown planthoppers(Nilaparvata lugens).Insect Biochem Mol Biol,2016,73:55–61.
    [127]Ahn HM,Lee KS,Lee DS,Yu K.JNK/FOXO mediated Peroxiredoxin V expression regulates redox homeostasis during Drosophila melanogaster gut infection.Dev Comp Immunol,2012,38(3):466–473.
    [128]Bode AM,Dong ZG.The functional contrariety of JNK.Mol Carcinog,2007,46(8):591–598.
    [129]Wang MC,Bohmann D,Jasper H.JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila.Dev Cell,2003,5(5):811–816.
    [130]Wang MC,Bohmann D,Jasper H.JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling.Cell,2005,121(1):115–125.
    [131]Wang ZF,Yang PC,Chen DF,Jiang F,Li Y,Wang XH,Kang L.Identification and functional analysis of olfactory receptor family reveal unusual characteristics of the olfactory system in the migratory locust.Cell Mol Life Sci,2015,72(22):4429–4443.
    [132]Casta?eda LE,Figueroa CC,Bacigalupe LD,Nespolo RF.Effects of wing polyphenism,aphid genotype and host plant chemistry on energy metabolism of the grain aphid,Sitobion avenae.J Insect Physiol,2010,56(12):1920–1924.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.