调水调沙工程黄河口近岸沉积物重金属和砷含量的空间分布及其生态风险评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial distribution of heavy metals and As concentrations and assessment of their ecological risk in inshore sediments,affected by the Flow-sediment Regulation Scheme in the Yellow River estuary
  • 作者:田莉萍 ; 孙志高 ; 王传远 ; 孙万龙 ; 黎静 ; 陈冰冰
  • 英文作者:TIAN Liping;SUN Zhigao;WANG Chuanyuan;SUN Wanlong;LI Jing;CHEN Bingbing;Institute of Geography,Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University) ,Ministry of Education,Fujian Normal University;Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation,Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences;School of Environment,Tsinghua University;
  • 关键词:重金属 ; ; 污染来源 ; 生态风险 ; 黄河口
  • 英文关键词:heavy metal;;arsenic;;pollution sources;;ecological risk;;Yellow River estuary
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:福建师范大学地理研究所湿润亚热带生态地理过程教育部重点实验室;中国科学院烟台海岸带研究所海岸带环境过程与生态修复重点实验室;清华大学环境学院;
  • 出版日期:2018-04-19 09:10
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金面上项目(41371104,41171424);; 福建省“闽江学者奖励计划”项目
  • 语种:中文;
  • 页:STXB201815027
  • 页数:12
  • CN:15
  • ISSN:11-2031/Q
  • 分类号:263-274
摘要
为了明确调水调沙工程长期影响下黄河口近岸沉积物中重金属含量的分布特征及其生态风险,基于2012年黄河口近岸27个站位的表层沉积物样品,通过ICP-MS测定重金属(Zn、Cr、Ni、Pb、Cu、Cd)和砷(As)含量,并运用潜在生态风险指数法(RI)对其进行生态风险评估。结果表明:近岸沉积物中重金属和As的平均含量表现为As>Zn>Cr>Ni>Pb>Cu>Cd。Cr、Ni、Cu和Pb四种元素的分布规律较为一致,整体呈现出近岸和近黄河口高而远离河口和岸线低的空间分异特征。Ni、Cu、Pb、Zn与粘土均呈极显著或显著正相关(P<0.01或P<0.05),而Cd、Cr和As与其相关性均未达到显著水平(P>0.05)。近岸沉积物中6种重金属和As的平均单项潜在生态风险指数大小顺序整体表现为Cd>As>Ni>Pb>Cu>Cr>Zn。就潜在生态风险(RI)而言,研究区域18.52%的站位属轻微生态危害,70.07%的站位属中等生态危害,7.41%的站位属强生态危害,Cd和As是造成危害的两种主要元素。近岸沉积物中重金属和As的来源复杂且多样,主要是由于农业化肥使用、海上石油开采和泄漏、化石燃料燃烧以及河口污染物输入所致。对比研究发现,随着调水调沙工程的长期实施,除Cd和As外沉积物中其他重金属含量均呈下降趋势,说明二者的生态风险将会随调水调沙的长期实施呈增加趋势,而其他重金属的生态风险将呈降低趋势,故未来应重点关注近岸沉积物中Cd和As的生态毒理风险。
        To clarify the concentration distribution characteristics of heavy metal and arsenic( As) and their ecological risks in the sediments of the Yellow River estuary and the long-term effects of the Flow-sediment Regulation Scheme( FSRS),the concentrations of six heavy metals( Zn,Cr,Ni,Pb,Cu,Cd) and As in the surface sediments of 27 stations sampledin 2012 were determined by ICP-MS and their ecological risks were evaluated by determining the potential ecological risk index( RI). The results showed that the average levels of heavy metal and As in inshore sediments were in the order of As >Zn > Cr > Ni > Pb > Cu > Cd. The spatial distributions of Cr,Ni,Cu,and Pb concentrations were consistent,and higher values were generally detected in inshore and near the Yellow River estuary,whereas lower values were observed far from the estuary and coastline. Ni,Cu,Pb,and Zn concentrations showed significantly positive correlations with clay( P <0.05),whereas no significant correlations were observed between clay and Cd( or Cr and As)( P > 0.05). The average potential ecological risk indices of six heavy metals and As in inshore sediments generally followed the order of Cd > As >Ni > Pb > Cu > Cr > Zn. According to the RI values in the study area,18. 52% of stations were slightly ecologically hazardous,70.07% of stations were moderately ecologically hazardous,and 7. 41% of stations were strongly ecologically hazardous,which was mainly caused by Cd and As. Because of the use of agricultural fertilizers,inshore oil extraction,fossil fuel combustion,and estuarine pollutant input,the sources of heavy metals and As in inshore sediments are complex and diverse. This study showed that only the concentrations of Cd and As showed an increasing trend following long-term implementation of the FSRS,indicating that their ecotoxicological risk in inshore sediments of the Yellow River estuary should be evaluated in the future.
引文
[1]F9rstner U,Wittmann G T.Metal Pollution in the Aquatic Environment.Berlin:Springer Science and Business Media,2012.
    [2]Pedersen K B,Kirkelund G M,Ottosen L M,Jensen P E,Lejon T.Multivariate methods for evaluating the efficiency of electrodialytic removal of heavy metals from polluted harbour sediments.Journal of Hazardous Materials,2015,283:712-720.
    [3]Singh K P,Mohan D,Singh V K,Malik A.Studies on distribution and fractionation of heavy metals in Gomti river sediments-a tributary of the Ganges,India.Journal of Hydrology,2005,312(1/4):14-27.
    [4]Bryan G W,Langston W J.Bioavailability,accumulation and effects of heavy metals in sediments with special reference to united kingdom estuaries:a review.Environmental Pollution,1992,76(2):89-131.
    [5]Waheed S,Malik R N,Jahan S.Health risk from As contaminated fish consumption by population living around river Chenab,Pakistan.Environmental Toxicology and Pharmacology,2013,36(2):579-587.
    [6]Zhang P,Hu R J,Zhu L H,Wang P,Yin D X,Zhang L J.Distributions and contamination assessment of heavy metals in the surface sediments of western Laizhou Bay:implications for the sources and influencing factors.Marine Pollution Bulletin,2017,119(1):429-438.
    [7]Liu J J,Xu Y Z,Cheng Y X,Zhao Y Y,Pan Y N,Fu G Y,Dai Y Z.Occurrence and risk assessment of heavy metals in sediments of the Xiangjiang River,China.Environmental Science and Pollution Research,2017,24(3):2711-2723.
    [8]Liu W X,Li X D,Shen Z G,Wang D C,Wai O W H,Li Y S.Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary.Environmental Pollution,2003,121(3):377-388.
    [9]Qiao S Q,Yang Z S,Pan Y J,Guo Z G.Metals in suspended sediments from the Changjiang(Yangtze River)and Huanghe(Yellow River)to the sea,and their comparison.Estuarine,Coastal and Shelf Science,2007,74(3):539-548.
    [10]Tang A K,Liu R H,Ling M,Xu L Q,Wang J Y.Distribution characteristics and controlling factors of soluble heavy metals in the Yellow River Estuary and adjacent sea.Procedia Environmental Sciences,2010,2:1193-1198.
    [11]王贵,张丽洁.海湾河口沉积物重金属分布特征及形态研究.海洋地质动态,2002,18(12):1-5.
    [12]林荣根,刘新威,吴景阳.长江口和黄河口沉积物非残渣态中元素的相关性.海洋环境科学,2000,19(1):1-4.
    [13]王少红,高兴梅,张波.黄河口表层沉积物中的可提取铜和锌.青岛建筑工程学院学报,1995,16(1):32-36.
    [14]张亚南.黄河口、长江口、珠江口及其邻近海域重金属的河口过程和沉积物污染风险评价[D].厦门:国家海洋局第三海洋研究所,2013.
    [15]Jia H L,Sun K J,Zhang J,Luo X X.Distribution and pollution assessment of heavy metals in surface sediment in Yellow River Estuary and the adjacent sea area.Applied Mechanics and Materials,2014,665:464-468.
    [16]Wang Y,Ling M,Liu R H,Yu P,Tang A K,Luo X X,Ma Q M.Distribution and source identification of trace metals in the sediment of Yellow River Estuary and the adjacent Laizhou Bay.Physics and Chemistry of the Earth,Parts A/B/C,2017,97:62-70.
    [17]Hakanson L.An ecological risk index for aquatic pollution control.a sedimentological approach.Water Research,1980,14(8):975-1001.
    [18]中国环境监测总站.中国土壤元素背景值.北京:中国环境科学出版社,1990:271-296.
    [19]徐争启,倪师军,庹先国,张成江.潜在生态危害指数法评价中重金属毒性系数计算.环境科学与技术,2008,31(2):112-115.
    [20]李强,王义民,白涛.黄河水沙调控研究综述.西北农林科技大学学报:自然科学版,2014,42(12):227-234.
    [21]李淑媛,刘国贤,苗丰民.渤海沉积物中重金属分布及环境背景值.中国环境科学,1994,14(5):370-376.
    [22]刘汝海,吴晓燕,秦洁,孙培艳,王艳,贾永刚,崔文林.黄河口河海混合过程水中重金属的变化特征.中国海洋大学学报,2008,38(1):157-162.
    [23]吴斌,宋金明,李学刚.黄河口表层沉积物中重金属的环境地球化学特征.环境科学,2013,34(4):1324-1332.
    [24]赵一阳,鄢明才.黄河、长江、中国浅海沉积物化学元素丰度比较.科学通报,1992,37(13):1202-1204.
    [25]王苗苗,孙志高,卢晓宁,王伟,王传远.调水调沙工程长期实施对黄河口近岸沉积物粒度分布与黏土矿物组成特征的影响.环境科学,2015,36(4):1256-1262.
    [26]Bi N S,Wang H J,Yang Z S.Recent changes in the erosion-accretion patterns of the active Huanghe(Yellow River)delta lobe caused by human activities.Continental Shelf Research,2014,90:70-78.
    [27]龚书椿,陈应新,朱兴,冯贻华.河口地区重金属元素环境化学.海洋环境科学,1983,2(3):28-44.
    [28]蒋跃进,蒋岚.蓬莱19-3油田溢油事故分析和启示.广州航海学院学报,2014,22(S1):124-127.
    [29]邵涛,刘真,黄开明,谢思琴.油污染土壤重金属赋存形态和生物有效性研究.中国环境科学,2000,20(1):57-60.
    [30]Iwegbue C M A.Assessment of heavy metal speciation in soils impacted with crude oil in the Niger Delta,Nigeria.Chemical Speciation and Bioavailability,2011,23(1):7-15.
    [31]叶雅文.国外钻井废泥浆处理水平调査.油气田环境保护,1993,3(1):48-56.
    [32]刘树堂,赵永厚,孙玉林,韩晓日,姚源喜.25年长期定位施肥对非石灰性潮土重金属状况的影响.水土保持学报,2005,19(1):164-167.
    [33]Taylor M D.Accumulation of cadmium derived from fertilisers in New Zealand soils.Science of the Total Environment,1997,208(1/2):123-126.
    [34]东营市统计局.东营统计年鉴-农林牧渔业.东营统计信息网.(2012-11-27).http://dystjj.dongying.gov.cn/dytj/Columns/19374178653.shtml.
    [35]温晓君,白军红,贾佳,高照琴,王军静,卢琼琼,赵庆庆.黄河三角洲典型潮间带盐沼土壤重金属含量及来源分析.湿地科学,2015,13(6):722-727.
    [36]邹建军.浙江东部近岸海域海底沉积物环境地球化学研究[D].长春:吉林大学,2005.
    [37]乔永民,黄长江.汕头湾表层沉积物重金属元素含量和分布特征研究.海洋学报,2009,31(1):106-116.
    [38]王正方,应时理,何祖文,翁建新.浙江沿岸第四纪沉积物中重金属形态的初析.东海海洋,1986,4(1):62-68.
    [39]孙文广,甘卓亭,孙志高,李丽丽,孙景宽,孙万龙,牟晓杰,王玲玲.黄河口新生湿地土壤Fe和Mn元素的空间分布特征.环境科学,2013,34(11):4411-4419.
    [40]于帅,毕乃双,王厚杰,赵博.黄河调水调沙影响下河口入海泥沙扩散及沉积效应.海洋湖沼通报,2015,2:155-163.
    [41]王小静,李力,高晶晶,刘季花,张颖.渤海西南部近岸功能区表层沉积物重金属形态分析及环境评价.海洋与湖沼,2015,46(3):517-525.
    [42]国家海洋局.海洋公报,2004-2014.http://www.coi.gov.cn/gongbao/.
    [43]陈康,方展强,安东,杨雄邦,唐以杰.珠江口沿岸水域表层沉积物中重金属含量分布及污染评价.应用海洋学学报,2013,32(1):20-28.
    [44]王帅,胡恭任,于瑞莲,余伟河,周楚凡.九龙江河口表层沉积物中重金属污染评价及来源.环境科学研究,2014,27(10):1110-1118.
    [45]王蓓.长江口及其邻近海域沉积物重金属环境地球化学研究[D].青岛:中国海洋大学,2008.
    [46]李睿,吴艳宏,邴海健,周俊,王吉鹏,梁建宏.青藏高原东麓贡嘎山东坡土壤中Pb的来源解析.环境科学研究,2015,28(9):1439-1448.
    [47]傅晓文.盐渍化石油污染土壤中重金属的污染特征、分布和来源解析[D].济南:山东大学,2014.
    [48]徐亚岩,宋金明,李学刚,袁华茂,李宁.渤海湾表层沉积物各形态重金属的分布特征与生态风险评价.环境科学,2012,33(3):732-740.
    [49]Zhang J.Geochemistry of arsenic in the Huanghe(Yellow River)and its delta region-a review of available data.Aquatic Geochemistry,1995,1(3):241-275.
    [50]李发成.黄河水中砷的污染来源.人民黄河,1980,2:68-69.
    [51]李传镇.岱海沉积物重金属环境地球化学研究[D].呼和浩特:内蒙古大学,2013.
    [52]张丽洁,王贵,姚德,段国正.近海沉积物重金属研究及环境意义.海洋地质动态,2003,19(3):6-9.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.