Bimetallic nanostructures with magnetic and noble metals and their physicochemical applications
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bimetallic nanostructures with magnetic and noble metals and their physicochemical applications
  • 作者:Sibin ; Duan ; Rongming ; Wang
  • 英文作者:Sibin Duan, Rongming Wang Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education) and Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
  • 英文关键词:Bimetallic nanomaterial; Microstructure; Synergistic effect; Magnetic property; Catalytic property; Optical property
  • 中文刊名:ZKJY
  • 英文刊名:自然科学进展-国际材料(英文版)
  • 机构:Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education) and Department of Physics, Beijing University of Aeronautics and Astronautics;
  • 出版日期:2013-04-15
  • 出版单位:Progress in Natural Science:Materials International
  • 年:2013
  • 期:v.23
  • 基金:supported by the National Natural Science Foundation of China (Nos. 50971011 and 11174023);; Beijing Natural Science Foundation (No. 1102025);; Research Fund for the Doctoral Program of Higher Education of China (No. 20091102110038)
  • 语种:英文;
  • 页:ZKJY201302004
  • 页数:14
  • CN:02
  • ISSN:11-3853/N
  • 分类号:15-28
摘要
Bimetallic nanomaterials consisting of magnetic metals and noble metals have attracted much interest for their promising potentials in fields such as magnetic sensors, catalysts, optical detection and biomedical applications. Bimetallic nanomaterials synthesized by wet-chemical methods with different architectures including nanoparticles, nanowires or nanotubes and their assemblies are summarized in this review. The particular properties of bimetallic nanomaterials, especially their magnetic, catalytic and optical properties, are presented. The advance in electron microscopy makes it possible to understand the nanostructural materials at much higher level than before, which helps to disclose the relationship between the microstructures and properties qualitatively and quantitatively.
        Bimetallic nanomaterials consisting of magnetic metals and noble metals have attracted much interest for their promising potentials in fields such as magnetic sensors, catalysts, optical detection and biomedical applications. Bimetallic nanomaterials synthesized by wet-chemical methods with different architectures including nanoparticles, nanowires or nanotubes and their assemblies are summarized in this review. The particular properties of bimetallic nanomaterials, especially their magnetic, catalytic and optical properties, are presented. The advance in electron microscopy makes it possible to understand the nanostructural materials at much higher level than before, which helps to disclose the relationship between the microstructures and properties qualitatively and quantitatively.
引文
[1] L.D. Marks, Experimental studies of small particle structures, Reports on Progress in Physics 57 (6) (1994) 603.
    [2] J.D. Aiken III, R.G. Finke, A review of modern transition- metal nanoclusters: their synthesis, characterization, and appli- cations in catalysis, Journal of Molecular Catalysis A: Chemical 145 (1–2) (1999) 1–44.
    [3] A.-H. Lu, E.L. Salabas, F. Schueth, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Ange- wandte Chemie-International Edition 46 (8) (2007) 1222–1244.
    [4] K. Lu, The future of metals, Science 328 (5976) (2010) 319–320.
    [5] C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards, Metal nanoparticles and their assemblies, Chemical Society Reviews 29 (1) (2000) 27–35.
    [6] N. Toshima, Recent progress in applications of ligand-stabilized metal nanoclusters, Macromolecular Symposia 204 (1) (2003) 219–226.
    [7] J.P. Wilcoxon, B.L. Abrams, Synthesis, structure and properties of metal nanoclusters, Chemical Society Reviews 35 (11) (2006) 1162–1194.
    [8] E. Roduner, Size matters: why nanomaterials are different, Chemical Society Reviews 35 (7) (2006) 583–592.
    [9] S. Xiao, W. Hu, W. Luo, Y. Wu, X. Li, H. Deng, Size effect on alloying ability and phase stability of immiscible bimetallic nanoparticles, European Physical Journal B 54 (4) (2006) 479–484.
    [10] S. Link, Z.L. Wang, M.A. El-Sayed, Alloy formation of gold– silver nanoparticles and the dependence of the plasmon absorp- tion on their composition, Journal of Physical Chemistry B 103 (18) (1999) 3529–3533.
    [11] K.J. Major, C. De, S.O. Obare, Recent advances in the synthesis of plasmonic bimetallic nanoparticles, Plasmonics 4 (1) (2009) 61–78.
    [12] S.A. Chambers, Y.K. Yoo, New materials for spintronics, MRS Bulletin 28 (10) (2003) 706–708.
    [13] J.A. Rodriguez, D.W. Goodman, The nature of the metal metal bond in bimetallic surfaces, Science 257 (5072) (1992) 897–903.
    [14] J. Tanori, N. Duxin, C. Petit, I. Lisiecki, P. Veillet, M.P. Pileni, Synthesis of nanosize metallic and alloyed particles in ordered phases, Colloid and Polymer Science 273 (9) (1995) 886–892.
    [15] Q.J. Ge, Y.M. Huang, F.Y. Qiu, S.B. Li, Bifunctional catalysts for conversion of synthesis gas to dimethyl ether, Applied Catalysis A—General 167 (1) (1998) 23–30.
    [16] F. Massicot, R. Schneider, Y. Fort, S. Illy-Cherrey, O. Tille- ment, Synergistic effect in bimetallic ni-al clusters. Application to efficient catalytic reductive dehalogenation of polychlori- nated arenes, Tetrahedron 56 (27) (2000) 4765–4768.
    [17] M.O. Nutt, J.B. Hughes, M.S. Wong, Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrode- chlorination, Environmental Science & Technology 39 (5) (2005) 1346–1353.
    [18] R.T. Mu, Q.A. Fu, H. Xu, H.I. Zhang, Y.Y. Huang, Z. Jiang, S.O. Zhang, D.L. Tan, X.H. Bao, Synergetic effect of surface and subsurface ni species at Pt–Ni bimetallic catalysts for CO oxidation, Journal of the American Chemical Society 133 (6) (2011) 1978–1986.
    [19] N.S. Sobal, U. Ebels, H. Mohwald, M. Giersig, Synthesis of core–shell PtCo nanocrystals, Journal of Physical Chemistry B 107 (30) (2003) 7351–7354.
    [20] D. Kodama, K. Shinoda, K. Sato, Y. Konno, R.J. Joseyphus, K. Motomiya, H. Takahashi, T. Matsumoto, Y. Sato, K. Tohji, B. Jeyadevan, Chemical synthesis of sub-micrometer- to nanometer-sized magnetic feco dice, Advanced Materials 18 (23) (2006) 3154–3159.
    [21] T. Hyeon, Chemical synthesis of magnetic nanoparticles, Chemical Communications 8 (2003) 927–934.
    [22] K.-M. Kang, H.-W. Kim, I.-W. Shim, H.-Y. Kwak, Catalytic test of supported Ni catalysts with core/shell structure for dry reforming of methane, Fuel Processing Technology 92 (6) (2011) 1236–1243.
    [23] N. Semagina, L. Kiwi-Minsker, Recent advances in the liquid- phase synthesis of metal nanostructures with controlled shape and size for catalysis, Catalysis Reviews-Science and Engineer- ing 51 (2) (2009) 147–217.
    [24] R. Sardar, A.M. Funston, P. Mulvaney, R.W. Murray, Gold nanoparticles: past, present, and future, Langmuir 25 (24) (2009) 13840–13851.
    [25] M.N. Nadagouda, R.S. Varma, A greener synthesis of core (Fe, Cu)–shell (An, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C, Crystal Growth & Design 7 (12) (2007) 2582–2587.
    [26] M. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E. Otero, C. Sciancalepore, A.M. Talarico, M.A. Arrio, A. Cornia, D. Gatteschi, R. Sessoli, Magnetic memory of a single- molecule quantum magnet wired to a gold surface, Nature Materials 8 (3) (2009) 194–197.
    [27] F. Tao, M.E. Grass, Y.W. Zhang, D.R. Butcher, J.R. Renzas, Z. Liu, J.Y. Chung, B.S. Mun, M. Salmeron, G.A. Somorjai, Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles, Science 322 (5903) (2008) 932–934.
    [28] D. Fox, R. Verre, B.J. O’dowd, S.K. Arora, C.C. Faulkner, I.V. Shvets, H. Zhang, Investigation of coupled cobalt–silver nano- particle system by plan view TEM, Progress in Natural Science: Materials International 22 (3) (2012) 186–192.
    [29] R. Ferrando, J. Jellinek, R.L. Johnston, Nanoalloys: from theory to applications of alloy clusters and nanoparticles, Chemical Reviews 108 (3) (2008) 845–910.
    [30] D.S. Wang, Y.D. Li, Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications, Advanced Materials 23 (9) (2011) 1044–1060.
    [31] Z. Peng, H. Yang, Synthesis and oxygen reduction electrocata- lytic property of Pt-on-Pd bimetallic heteronanostructures, Jour- nal of the American Chemical Society 131 (22) (2009) 7542–7543.
    [32] D. Wang, Y. Li, One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process, Journal of the American Chemical Society 132 (18) (2010) 6280–6281.
    [33] D.Y. Wang, H.L. Chou, Y.C. Lin, F.J. Lai, C.H. Chen, J.F. Lee, B.J. Hwang, C.C. Chen, Simple replacement reaction for the preparation of ternary Fe 1–x PtRu xnanocrystals with super- ior catalytic activity in methanol oxidation reaction, Journal of the American Chemical Society 134 (24) (2012) 10011–10020.
    [34] M.S. Chen, D. Kumar, C.W. Yi, D.W. Goodman, The promo- tional effect of gold in catalysis by palladium–gold, Science 310 (5746) (2005) 291–293.
    [35] J. Zhang, J.-O. Mueller, W. Zheng, D. Wang, D. Su, R. Schloegl, Individual Fe–Co alloy nanoparticles on carbon nanotubes: structural and catalytic properties, Nano Letters 8 (9) (2008) 2738–2743.
    [36] S. Anandan, F. Grieser, M. Ashok kumar, Sonochemical synthesis of Au–Ag core–shell bimetallic nanoparticles, Journal of Physical Chemistry C 112 (39) (2008) 15102–15105.
    [37] K.E. Elkins, T.S. Vedantam, J.P. Liu, H. Zeng, S.H. Sun, Y. Ding, Z.L. Wang, Ultrafine FePt nanoparticles prepared by the chemical reduction method, Nano Letters 3 (12) (2003) 1647–1649.
    [38] J.-M. Yan, X.-B. Zhang, T. Akita, M. Haruta, Q. Xu, One-step seeding growth of magnetically recyclable Au@Co core-shell nanoparticles: highly efficient catalyst for hydrolytic dehydro- genation of ammonia borane, Journal of the American Chemi- cal Society 132 (15) (2010) 5326–5327.
    [39] M. Tsuji, D. Yamaguchi, M. Matsunaga, K. Ikedo, Epitaxial growth of Au@Ni core–shell nanocrystals prepared using a two-step reduction method, Crystal Growth & Design 11 (5) (2011) 1995–2005.
    [40] Q. Sun, Z. Ren, R.M. Wang, N. Wang, X. Cao, Platinum catalyzed growth of NiPt hollow spheres with an ultrathin shell, Journal of Materials Chemistry 21 (6) (2011) 1925–1930.
    [41] Q. Sun, W. Liu, R.M. Wang, Double-layered NiPt nanobowls with ultrathin shell synthesized in water at room temperature, CrystEngComm 14 (16) (2012) 5151–5154.
    [42] Y.Y. Jiang, Y.Z. Lu, D.X. Han, Q.X. Zhang, L. Niu, Hollow Ag@Pd core–shell nanotubes as highly active catalysts for the electro-oxidation of formic acid, Nanotechnology 23 (10) (2012) 105609.
    [43] H.M. Chen, C.F. Hsin, P.Y. Chen, R.S. Liu, S.F. Hu, C.Y. Huang, J.F. Lee, L.Y. Jang, Ferromagnetic CoPt 3nanowires: structural evolution from fcc to ordered L1(2), Journal of the American Chemical Society 131 (43) (2009) 15794–15801.
    [44] C.Z. Zhu, S.J. Guo, S.J. Dong, PdM (M Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules, Advanced Materials 24 (17) (2012) 2326–2331.
    [45] S.J. Hurst, E.K. Payne, L.D. Qin, C.A. Mirkin, Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods, Angewandte Chemie-International Edition 45 (17) (2006) 2672–2692.
    [46] W. Wei, S. Li, J.E. Millstone, M.J. Banholzer, X. Chen, X. Xu, G.C. Schatz, C.A. Mirkin, Surprisingly long-range surface- enhanced Raman scattering (SERS) on Au–Ni multisegmented nanowires, Angewandte Chemie-International Edition 48 (23) (2009) 4210–4212.
    [47] J.R. Choi, S.J. Oh, H. Ju, J. Cheon, Massive fabrication of free- standing one-dimensional Co/Pt nanostructures and modula- tion of ferromagnetism via a programmable barcode layer effect, Nano Letters 5 (11) (2005) 2179–2183.
    [48] C. Wang, Y. Hou, J. Kim, S. Sun, A general strategy for synthesizing FePt nanowires and nanorods, Angewandte Chemie-International Edition 46 (33) (2007) 6333–6335.
    [49] X. Hong, D. Wang, R. Yu, H. Yan, Y. Sun, L. He, Z. Niu, Q. Peng, Y. Li, Ultrathin Au–Ag bimetallic nanowires with coulomb blockade effects, Chemical Communications 47 (18) (2011) 5160–5162.
    [50] S.H. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science 287 (5460) (2000) 1989–1992.
    [51] W.L. Zhou, E.E. Carpenter, J. Lin, A. Kumbhar, J. Sims, C.J. O’connor, Nanostructures of gold coated iron core–shell nanoparticles and the nanobands assembled under magnetic field, European Physical Journal D 16 (1–3) (2001) 289–292.
    [52] Y. Lu, Y. Zhao, L. Yu, L. Dong, C. Shi, M.-J. Hu, Y.-J. Xu, S.-H. Wen L-Pyu, Hydrophilic Co@Au yolk/shell nanospheres: synthesis, assembly, and application to gene delivery, Advanced Materials 22 (12) (2010) 1407–1411.
    [53] P.W. Li, W.M. Chen, W. Liu, Z.A. Li, Y.M. Cui, A.P. Huang, R.M. Wang, C.P. Chen, Thermodynamic phase formation of morphology and size controlled Ni nanochains by temperature and magnetic field, Journal of Physical Chemistry C 114 (17) (2010) 7721–7726.
    [54] P.W. Li, Y.M. Cui, G. Behan, H.Z. Zhang, R.M. Wang, Room temperature synthesis and one-dimensional self-assembly of interlaced Ni nanodiscs under magnetic field, Journal of Physics D-Applied Physics 43 (27) (2010) 275002.
    [55] P.W. Li, R.M. Wang, W.M. Chen, C.P. Chen, X.Y. Gao, A.T.S. Wee, Well-aligned nickel nanochains synthesized by a template-free route, Nanoscale Research Letters 5 (3) (2010) 597–602.
    [56] P.W. Li, N. Wang, R.M. Wang, Flower-like nickel nanocrys- tals: facile synthesis, shape evolution, and their magnetic properties, European Journal of Inorganic Chemistry 15 (2010) 2261–2265.
    [57] R.M. Wang, P.W. Li, C.P. Chen, Template-free synthesis and self-assembly of aligned nickel nanochains under magnetic fields, Journal of Nanoscience and Nanotechnology 11 (12) (2011) 11128–11132.
    [58] Q. Sun, S.G. Wang, R.M. Wang, Well-aligned CoPt hollow nanochains synthesized in water at room temperature, Journal of Physical Chemistry C 116 (9) (2012) 5352–5357.
    [59] M.E. Gruner, G. Rollmann, P. Entel, M. Farle, Multiply twinned morphologies of FePt and CoPt nanoparticles, Physical Review Letters 100 (8) (2008) 087203.
    [60] D. Alloyeau, C. Ricolleau, C. Mottet, T. Oikawa, C. Langlois, Y. Le Bouar, N. Braidy, A. Loiseau, Size and shape effects on the order–disorder phase transition in CoPt nanoparticles, Nature Materials 8 (12) (2009) 940–946.
    [61] P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney,A. Nilsson, Lattice-strain control of the activity in dealloyed core– shell fuel cell catalysts, Nature Chemistry 2 (6) (2010) 454–460.
    [62] H. Luo, R. Jing, Y.-M. Cui, H.-L. Wang, R.M. Wang, Improvement of fabrication precision of focused ion beam by introducing simultaneous electron beam, Progress in Natural Science: Materials International 20 (0) (2010) 111–115.
    [63] K. Sun, J. Liu, N.K. Nag, N.D. Browning, Atomic scale characterization of supported Pd–Cu/g-Al 2O 3bimetallic catalysts, Journal of Physical Chemistry B 106 (47) (2002) 12239–12246.
    [64] K.W. Urban, Studying atomic structures by aberration- corrected transmission electron microscopy, Science 321 (5888) (2008) 506–510.
    [65] M.J. Hytch, J.L. Putaux, J.M. Penisson, Measurement of the displacement field of dislocations to 0.03 angstrom by electron microscopy, Nature 423 (6937) (2003) 270–273.
    [66] M. Hytch, F. Houdellier, F. Hue, E. Snoeck, Nanoscale holographic interferometry for strain measurements in electro- nic devices, Nature 453 (7198) (2008) 1086–1090.
    [67] A. Mayoral, S. Mejia-Rosales, M.M. Mariscal, E. Perez- Tijerina, M. Jose-Yacaman, The Co–Au interface in bimetallic nanoparticles: a high resolution stem study, Nanoscale 2 (12) (2010) 2647–2651.
    [68] B. Lim, J.G. Wang, P.H.C. Camargo, M.J. Jiang, M.J. Kim, Y.N. Xia, Facile synthesis of bimetallic nanoplates consisting of Pd cores and Pt shells through seeded epitaxial growth, Nano Letters 8 (8) (2008) 2535–2540.
    [69] D. Ferrer, D.A. Blom, L.F. Allard, S. Mejia, E. Perez-Tijerina, M. Jose-Yacaman, Atomic structure of three-layer Au/Pd nanoparticles revealed by aberration-corrected scanning trans- mission electron microscopy, Journal of Materials Chemistry 18 (21) (2008) 2442–2446.
    [70] R.M. Wang, O. Dmitrieva, M. Farle, G. Dumpich, H.Q. Ye, H. Poppa, R. Kilaas, C. Kisielowski, Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nano- particles, Physical Review Letters 100 (1) (2008) 017205.
    [71] R.M. Wang, H.Z. Zhang, M. Farle, C. Kisielowski, Structural stability of icosahedral FePt nanoparticles, Nanoscale 1 (2) (2009) 276–279.
    [72] R.M. Wang, O. Dmitrieva, M. Farle, G. Dumpich, M. Acet, S. Mejia-Rosales, E. Perez-Tijerina, M.J. Yacaman, C. Kisie- lowski, FePt icosahedra with magnetic cores and catalytic shells, Journal of Physical Chemistry C 113 (11) (2009) 4395– 4400.
    [73] N. Braidy, Z.J. Jakubek, B. Simard, G.A. Botton, Quantitative energy dispersive X-ray microanalysis of electron beam-sensitive alloyed nanoparticles, Microscopy and Microanalysis 14 (2) (2008) 166–175.
    [74] L.F. Allard, W.C. Bigelow, M. Jose-Yacaman, D.P. Nackashi, J. Damiano, S.E. Mick, A new MEMS-based system for ultra- high-resolution imaging at elevated temperatures, Microscopy Research and Technique 72 (3) (2009) 208–215.
    [75] B. Lim, H. Kobayashi, P.H.C. Camargo, L.F. Allard, J. Liu, Y. Xia, New insights into the growth mechanism and surface structure of palladium nanocrystals, Nano Research 3 (3) (2010) 180–188.
    [76] A. Cao, G. Veser, Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanopar- ticles, Nature Materials 9 (1) (2010) 75–81.
    [77] S.H. Sun, C.B. Murray, Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited), Journal of Applied Physics 85 (8) (1999) 4325–4330.
    [78] F. Baletto, C. Mottet, R. Ferrando, Reentrant morphology transition in the growth of free silver nanoclusters, Physical Review Letters 84 (24) (2000) 5544–5547.
    [79] H.G. Lang, S. Maldonado, K.J. Stevenson, B.D. Chandler, Synthesis and characterization of dendrimer templated sup- ported bimetallic Pt–Au nanoparticles, Journal of the American Chemical Society 126 (40) (2004) 12949–12956.
    [80] P. Mulvaney, Surface plasmon spectroscopy of nanosized metal particles, Langmuir 12 (3) (1996) 788–800.
    [81] A.K. Salem, P.C. Searson, K.W. Leong, Multifunctional nanor- ods for gene delivery, Nature Materials 2 (10) (2003) 668–671.
    [82] A.E. Pullen, S. Zeltner, R.-M. Olk, E. Hoyer, K.A. Abboud, J.R. Reynolds, Electrically conducting materials based on m- tetrathiooxalato-bridged bimetallic Ni(II) anionic complexes, Inorganic Chemistry 36 (19) (1997) 4163–4171.
    [83] S. Zhao, R.J. Gorte, The activity of Fe–Pd alloys for the water– gas shift reaction, Catalysis Letters 92 (1) (2004) 75–80.
    [84] V. Abdelsayed, G. Glaspell, M. Nguyen, J.M. Howe, M. Samy El-Shall, Laser synthesis of bimetallic nanoalloys in the vapor and liquid phases and the magnetic properties of PdM and PtM nanoparticles (M Fe, Co and Ni), Faraday Discussions 138 (2008) 163–180.
    [85] P. Yu, M. Pemberton, P. Plasse, PtCo/C cathode catalyst for improved durability in PEMFCs, Journal of Power Sources 144 (1) (2005) 11–20.
    [86] V.V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.M. Garcia-Martin, T. Thomay, A. Leitenstorfer, R. Bratschitsch, Active magneto-plasmonics in hybrid metal–ferromagnet structures, Nature Photonics 4 (2) (2010) 107–111.
    [87] B. Sepulveda, A. Calle, L.M. Lechuga, G. Armelles, Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon- resonance sensor, Optics Letters 31 (8) (2006) 1085–1087.
    [88] H. Coufal, L. Dhar, C.D. Mee, Materials for magnetic data storage: the ongoing quest for superior magnetic materials, MRS Bulletin 31 (5) (2006) 374–375.
    [89] D. Zhang, R. Chung, A.B. Karki, F. Li, D.P. Young, Z. Guo, Magnetic and magnetoresistance behaviors of solvent extracted particulate iron/polyacrylonitrile nanocomposites, Journal of Physical Chemistry C 114 (1) (2010) 212–219.
    [90] Z. Guo, S. Park, H.T. Hahn, S. Wei, M. Moldovan, A.B. Karki, D.P. Young, Giant magnetoresistance behavior of an iron/ carbonized polyurethane nanocomposite, Applied Physics Let- ters 90 (2007) 053111.
    [91] R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes, Advanced Materials 16 (5) (2004) 401–405.
    [92] Y.J. Chen, P. Gao, C.L. Zhu, R.X. Wang, L.J. Wang, M.S. Cao, X.Y. Fang, Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe 3O 4/Fe/SiO 2core/shell nanorods, Journal of Applied Physics 106 (2009) 5.
    [93] M.P. Pileni, Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals, Advanced Functional Mate- rials 11 (5) (2001) 323–336.
    [94] H. Bonnemann, R.A. Brand, W. Brijoux, H.W. Hofstadt, M. Frerichs, V. Kempter, W. Maus-Friedrichs, N. Matous- sevitch, K.S. Nagabhushana, F. Voigts, V. Caps, Air stable Fe and Fe–Co magnetic fluids—synthesis and characteriza- tion, Applied Organometallic Chemistry 19 (6) (2005) 790– 796.
    [95] C. Sun, J.S.H. Lee, M.Q. Zhang, Magnetic nanoparticles in MR imaging and drug delivery, Advanced Drug Delivery Reviews 60 (11) (2008) 1252–1265.
    [96] P.S. Doyle, J. Bibette, A. Bancaud, J.L. Viovy, Self-assembled magnetic matrices for DNA separation chips, Science 295 (5563) (2002) 2237.
    [97] Z.H. Lu, M.D. Prouty, Z.H. Guo, V.O. Golub, C. Kumar, Y.M. Lvov, Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles, Langmuir 21 (5) (2005) 2042–2050.
    [98] T. Yamauchi, Y. Tsukahara, K. Yamada, T. Sakata, Y. Wada, Nucleation and growth of magnetic Ni–Co (core–shell) nano- particles in a one-pot reaction under microwave irradiation, Chemistry of Materials 23 (1) (2011) 75–84.
    [99] M. Gottwald, S. Andrieu, F. Gimbert, E. Shipton, L. Calmels, C. Magen, E. Snoeck, M. Liberati, T. Hauet, E. Arenholz, S. Mangin, E.E. Fullerton, Co/Ni(111) superlattices studied by microscopy, X-ray absorption, and ab initio calculations, Physical Review B 86 (1) (2012) 014425.
    [100] B. Lu, H. Huang, X.L. Dong, X.F. Zhang, J.P. Lei, J.P. Sun, C. Dong, Influence of alloy components on electromagnetic char- acteristics of core/shell-type Fe–Ni nanoparticles, Journal of Applied Physics 104 (11) (2008) 114313.
    [101] N.O. Nunez, P. Tartaj, M.P. Morales, P. Bonville, C.J. Serna, Yttria-coated FeCo magnetic nanoneedles, Chemistry of Mate- rials 16 (16) (2004) 3119–3124.
    [102] C. Wang, S. Peng, L.-M. Lacroix, S. Sun, Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles, Nano Research 2 (5) (2009) 380–385.
    [103] A.K. Giri, K.M. Chowdary, S.A. Majetich, Ac magnetic proper- ties of compacted FeCo nanocomposites, Materials Physics and Mechanics 1 (1) (2000) 1–10.
    [104] X. Li, Y.-X. Duan, Y. Zhao, L. Zhu, Effects of heat treatment on magnetic properties of Co–Fe-plated hollow ceramic micro- spheres, Progress in Natural Science: Materials International 21 (5) (2011) 392–400.
    [105] Z. Turgut, N.T. Nuhfer, H.R. Piehler, M.E. Mchenry, Magnetic properties and microstructural observations of oxide coated FeCo nanocrystals before and after compaction, Journal of Applied Physics 85 (8) (1999) 4406–4408.
    [106] O. Crisan, M. Angelakeris, N.K. Flevaris, G. Filoti, Magnetism and anisotropy in core–shell nanoparticles, Journal of Optoelec- tronics and Advanced Materials 5 (4) (2003) 959–962.
    [107] J.I. Park, M.G. Kim, Y.W. Jun, J.S. Lee, W.R. Lee, J. Cheon, Characterization of superpararnagnetic core–shell nanoparticles and monitoring their anisotropic phase transition to ferromag- netic solid solution nanoalloyse, Journal of the American Chemical Society 126 (29) (2004) 9072–9078.
    [108] S.C. Tsang, N. Cailuo, W. Oduro, A.T.S. Kong, L. Clifton, K.M.K. Yu, B. Thiebaut, J. Cookson, P. Bishop, Engineering preformed cobalt-doped platinum nanocatalysts for ultraselec- tive hydrogenation, ACS Nano 2 (12) (2008) 2547–2553.
    [109] F. Zheng, S. Alayoglu, J.H. Guo, V. Pushkarev, Y.M. Li, P.A. Glans, J.L. Chen, G. Somorjai, In-situ x-ray absorption study ofevolution of oxidation states and structure of cobalt in Co and CoPt bimetallic nanoparticles (4 nm) under reducing (H 2) and oxidizing (O 2) environments, Nano Letters 11 (2) (2011) 847– 853.
    [110] L. Wang, Y. Yamauchi, Autoprogrammed synthesis of triple- layered Au@Pd@Pt core–shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell, Journal of the American Chemical Society 132 (39) (2010) 13636–13638.
    [111] J. Chen, J.M. Mclellan, A. Siekkinen, Y. Xiong, Z.-Y. Li, Y. Xia, Facile synthesis of gold–silver nanocages with controllable pores on the surface, Journal of the American Chemical Society 128 (46) (2006) 14776–14777.
    [112] L. Au, X. Lu, Y. Xia, A comparative study of galvanic replacement reactions involving Ag nanocubes and AuCl 2or AuCl 4, Advanced Materials 20 (13) (2008) 2517–2522.
    [113] P.-P. Fang, J.-F. Li, Z.-L. Yang, L.-M. Li, B. Ren, Z.-Q. Tian, Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness, Journal of Raman Spectroscopy 39 (11) (2008) 1679–1687.
    [114] Y. Yang, J.L. Shi, G. Kawamura, M. Nogami, Preparation of Au– Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering, Scripta Materialia 58 (10) (2008) 862–865.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.