Nanomechanics of graphene
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nanomechanics of graphene
  • 作者:Yujie ; Wei ; Ronggui ; Yang
  • 英文作者:Yujie Wei;Ronggui Yang;The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences;School of Engineering Sciences, University of Chinese Academy of Sciences;Department of Mechanical Engineering,University of Colorado;
  • 英文关键词:graphene;;strength;;wrinkling;;pentagon–heptagon rings;;carbon honeycomb
  • 中文刊名:NASR
  • 英文刊名:国家科学评论(英文版)
  • 机构:The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences;School of Engineering Sciences, University of Chinese Academy of Sciences;Department of Mechanical Engineering,University of Colorado;
  • 出版日期:2019-03-15
  • 出版单位:National Science Review
  • 年:2019
  • 期:v.6
  • 基金:support from the National Natural Science Foundation of China(11425211);; support from the US National Science Foundation(1512776)
  • 语种:英文;
  • 页:NASR201902032
  • 页数:25
  • CN:02
  • ISSN:10-1088/N
  • 分类号:148-172
摘要
The super-high strength of single-layer graphene has attracted great interest. In practice, defects resulting from thermodynamics or introduced by fabrication, naturally or artificially, play a pivotal role in the mechanical behaviors of graphene. More importantly, high strength is just one aspect of the magnificent mechanical properties of graphene: its atomic-thin geometry not only leads to ultra-low bending rigidity,but also brings in many other unique properties of graphene in terms of mechanics in contrast to other carbon allotropes, including fullerenes and carbon nanotubes. The out-of-plane deformation is of a 'soft' nature, which gives rise to rich morphology and is crucial for morphology control. In this review article, we aim to summarize current theoretical advances in describing the mechanics of defects in graphene and the theory to capture the out-of-plane deformation. The structure–mechanical property relationship in graphene, in terms of its elasticity, strength, bending and wrinkling, with or without the influence of imperfections, is presented.
        The super-high strength of single-layer graphene has attracted great interest. In practice, defects resulting from thermodynamics or introduced by fabrication, naturally or artificially, play a pivotal role in the mechanical behaviors of graphene. More importantly, high strength is just one aspect of the magnificent mechanical properties of graphene: its atomic-thin geometry not only leads to ultra-low bending rigidity,but also brings in many other unique properties of graphene in terms of mechanics in contrast to other carbon allotropes, including fullerenes and carbon nanotubes. The out-of-plane deformation is of a 'soft' nature, which gives rise to rich morphology and is crucial for morphology control. In this review article, we aim to summarize current theoretical advances in describing the mechanics of defects in graphene and the theory to capture the out-of-plane deformation. The structure–mechanical property relationship in graphene, in terms of its elasticity, strength, bending and wrinkling, with or without the influence of imperfections, is presented.
引文
1.Novoselov KS,Geim AK and Morozov SV et al.Electric field effect in atomically thin carbon films.Science 2004;306:666-9.
    2.Geim AK.Graphene:status and prospects.Science 2009;324:1530-4.
    3.Mermin ND.Crystalline order in two dimensions.Phys Rev1968;176:250-4.
    4.Landau LD and Lifshitz EM.Statistical Physics.Part I.Oxford:Pergamon Press,1980.
    5.Saito R,Fujita M and Dresselhaus G et al.Physical Properties of Carbon Nanotubes.London:Imperial College London,1998.
    6.Hoffmann R,Kabanov AA and Golov DM et al.Homo citans and carbon allotropes:for an ethics of citation.Angew Chem Int Ed2016;55:10962-76.
    7.Lee C,Wei X and Kysar JW et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene.Science 2008;321:385-8.
    8.Lee GH,Cooper RC and An SJ et al.High-strength chemicalvapor-deposited graphene and grain boundaries.Science 2013;340:1073-6.
    9.Rasool HI,Ophus C and Klug WS et al.Measurement of the intrinsic strength of crystalline and polycrystalline graphene.Nat Commun 2013;4:2811.
    10.Yakobson BI,Brabec CJ and Bernholc J.Nanomechanics of carbon tubes:instabilities beyond linear response.Phys Rev Lett1996;76:2511-4.
    11.Fasolino A,Los JH and Katsnelson MI.Intrinsic ripples in graphene.Nat Mater 2007;6:858-61.
    12.Liu Y and Yakobson BI.Cones,pringles,and grain boundary landscapes in graphene topology.Nano Lett 2010;10:2178-83.
    13.Koenig SP,Boddeti NG and Dunn ML et al.Ultrastrong adhesion of graphene membranes.Nat Nanotechnol 2011;6:543-6.
    14.Gao Y,Liu LQ and Zu SZ et al.The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers.ACS Nano 2011;5:2134-41.
    15.Sen D,Novoselov KS and Reis PM et al.Tearing graphene sheets from adhesive substrates produces tapered nanoribbons.Small 2010;6:1108-16.
    16.Shi X,Yin Q and Wei Y.A theoretical analysis of the surface dependent binding,peeling and folding of graphene on single crystal copper.Carbon 2012;50:3055-63.
    17.Na SR,Suk JW and Tao L et al.Selective mechanical transfer of graphene from seed copper foil using rate effects.ACS Nano2015;9:1325-35.
    18.Filleter T,Mc Chesney JL and Bostwick A et al.Friction and dissipation in epitaxial graphene films.Phys Rev Lett 2009;102:086102.
    19.Lee C,Li Q and Kalb W et al.Frictional characteristics of atomically thin sheets.Science 2010;328:76-80.
    20.Choi JS,Kim JS and Byun IS et al.Friction anisotropy-driven domain imaging on exfoliated monolayer graphene.Science2011;333:607-10.
    21.Guo Y,Guo W and Chen C.Modifying atomic-scale friction between two graphene sheets:a molecular-force-field study.Phys Rev B 2007;76:155429.
    22.Zhang Z,Kutana A and Yakobson BI.Edge reconstructionmediated graphene fracture.Nanoscale 2015;7:2716-22.
    23.An J,Voelkl E and Suk JW et al.Domain(grain)boundaries and evidence of‘twinlike’structures in chemically vapor deposited grown graphene.ACS Nano 2011;5:2433-9.
    24.Huang PY,Ruiz-Vargas CS and van der Zande AM et al.Grains and grain boundaries in single-layer graphene atomic patchwork quilts.Nature 2011;469:389-92.
    25.Grantab R,Shenoy VB and Ruoff RS.Anomalous strength characteristics of tilt grain boundaries in graphene.Science 2010;330:946-8.
    26.Wei Y,Wu J and Yin H et al.The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene.Nat Mater 2012;11:759-63.
    27.Wu J and Wei Y.Grain misorientation and grain-boundary rotation dependent mechanical properties in polycrystalline graphene.J Mech Phys Solids 2013;61:1421-32.
    28.Teng L,Li X and Gao H.Fracture of graphene:a review.Int JFract 2015;196:1-31.
    29.Cao C,Sun Y and Filleter T.Characterizing mechanical behavior of atomically thin films:a review.J Mater Res 2014;29:338-47.
    30.Ivanovskii AL.Graphene-based and graphene-like materials.Russ Chem Rev 2012;81:571-605.
    31.Penkov O,Kim HJ and Kim HJ et al.Tribology of graphene:a review.Int J Precis Eng Manuf 2014;15:577-85.
    32.Akinwande D,Brennan CJ and Bunch JS et al.A review on mechanics and mechanical properties of 2D materialsgraphene and beyond.Extreme Mech Lett 2017;13:42-77.
    33.Penev ES,Artyukhov VI and Ding F et al.Unfolding the fullerene:nanotubes,graphene and poly-elemental varieties by simulations.Adv Mater 2012;24:4956-76.
    34.Neto AC,Guinea F and Peres NM et al.The electronic properties of graphene.Rev Mod Phys 2009;81:109-62.
    35.Ando T.The electronic properties of graphene and carbon nanotubes.NPG Asia Mater 2009;1:17-21.
    36.Katsnelson MI.Graphene:carbon in two dimensions.Mater Today 2007;10:20-7.
    37.Neto AHC.The electronic properties of graphene.Vacuum2007;244:4106-11.
    38.Allen MJ,Tung VC and Kaner RB.Honeycomb carbon:a review of graphene.Chem Rev 2010;110:132-45.
    39.Liu Z.Graphene:from basic science to useful technology.Natl Sci Rev 2015;2:16.
    40.Wu ZS,Feng X and Cheng HM.Recent advances in graphenebased planar micro-supercapacitors for on-chip energy storage.Natl Sci Rev 2014;1:277-92.
    41.Gu X,Wei Y and Yin X et al.Phononic thermal properties of two-dimensional materials.ar Xiv:1705.06156.
    42.Mermin ND and Wagner H.Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models.Phys Rev Lett1966;17:1133-6.
    43.Peierls RE.Bemerkung¨uber Umwandlungstemperaturen.Helv Phys Acta1934;7:81-3.
    44.Landau LD.Zur Theorie der phasenumwandlungen II.Phys Z Sowjetunion1937;11:26-35.
    45.Alder BJ and Wainwright TE.Phase transition in elastic disks.Phys Rev 1962;127:359-61.
    46.Shenderova OB,Zhirnov VV and Brenner DW.Carbon nanostructures.Crit Rev Solid State Mater Sci 2002;27:227-356.
    47.Kumar S and Parks DM.A comprehensive lattice-stability limit surface for graphene.J Mech Phys Solids 2016;86:19-41.
    48.Geim AK and Novoselov AK.The rise of graphene.Nat Mater 2007;6:183-91.
    49.Singh V,Joung D and Zhai L et al.Graphene based materials:past,present and future.Prog Mater Sci 2011;56:1178-271.
    50.Pereira VM,Castro Neto AH and Peres NMR.Tight-binding approach to uniaxial strain in graphene.Phys Rev B 2009;80:045401.
    51.Gibson LJ and Ashby MF.Cellular Solids,Structure and Properties,2nd edn.London:Cambridge University Press,1997.
    52.Liu F,Ming P and Li J.Ab initio calculation of ideal strength and phonon instability of graphene under tension.Phys Rev B 2007;76:064120.
    53.Van Lier G,Van Alsenoy C and Van Doren V et al.Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene.Chem Phys Lett2000;326:181-5.
    54.Zakharchenko KV,Katsnelson MI and Fasolino A.Finite temperature lattice properties of graphene beyond the quasiharmonic approximation.Phys Rev Lett 2009;102:046808.
    55.Bhatia NM and Nachbar W.Finite indentation of an elastic membrane by a spherical indenter.Int J Non Linear Mech 1968;3:307-24.
    56.Brugger K.Determination of third-order elastic coefficients in crystals.J Appl Phys 1965;36:768-73.
    57.Cadelano E,Palla PL and Giordano S et al.Nonlinear elasticity of monolayer graphene.Phys Rev Lett 2009;102:235502.
    58.Yin H,Qi HJ and Fan F et al.Griffith criterion for brittle fracture in graphene.Nano Lett 2015;15:1918-24.
    59.Wei Y,Wang B and Wu J et al.Bending rigidity and Gaussian bending stiffness of single-layered graphene.Nano Lett 2013;13:26-30.
    60.Sanchez-Portal D,Artacho E and Soler JM et al.Ab initio structural,elastic,and vibrational properties of carbon nanotubes.Phys Rev B 1999;59:12678-88.
    61.Arroyo M and Belytschko T.Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule.Phys Rev B 2004;69:115415.
    62.Koskinen P and Kit OO.Approximate modeling of spherical membranes.Phys Rev B 2010;82:235420.
    63.Nicklow R,Wakabayashi N and Smith HG.Lattice dynamics of pyrolytic graphite.Phys Rev B 1972;5:4951-62.
    64.Helfrich W.Elastic properties of lipid bilayers:theory and possible experiments.Zeitschrift fur Naturforschung C 1973;28:693-703.
    65.Lipowsky R.The conformation of membranes.Nature 1991;349:475-81.
    66.Timoshenko S and Woinowsky-Krieger S.Theory of Plates and Shells,2nd edn.London:Mc GRAW-HILL Book Company,1959.
    67.Yu L and Ru CQ.Non-classical mechanical behavior of an elastic membrane with an independent Gaussian bending rigidity.Math Mech Solids 2017;22:491-501.
    68.Davini C,Favata A and Paroni R.The Gaussian stiffness of graphene deduced from a continuum model based on molecular dynamics potentials.J Mech Phys Solids 2017;104:96-114.
    69.Ahmadpoor F,Wang P and Huang R et al.Thermal fluctuations and effective bending stiffness of elastic thin sheets and graphene:a nonlinear analysis.JMech Phys Solids 2017;107:294-319.
    70.Zhang T,Li X and Gao H.Defects controlled wrinkling and topological design in graphene.J Mech Phys Solids 2014,67:2-13.
    71.Zhang T,Li X and Gao H.Designing graphene structures with controlled distributions of topological defects:a case study of toughness enhancement in graphene ruga.Extreme Mech Lett 2014;1:3-8.
    72.Boddeti NG,Liu X and Long R et al.Graphene blisters with switchable shapes controlled by pressure and adhesion.Nano Lett 2013;13:6216-21.
    73.Girit CO,Meyer JC and Erni R et al.Graphene at the edge:stability and dynamics.Science 2009;323:1705-8.
    74.Voznyy O,G¨uc?l¨u AD and Potasz P et al.Effect of edge reconstruction and passivation on zero-energy states and magnetism in triangular graphene quantum dots with zigzag edges.Phys Rev B Cond Matter 2012;83:5919-26.
    75.Zhang Z,Kutana A and Yakobson BI.Edge reconstruction-mediated graphene fracture.Nanoscale 2015;7:2716-22.
    76.Berger C,Song Z and Li X et al.Electronic confinement and coherence in patterned epitaxial graphene.Science 2006;312:1191-6.
    77.Ozyilmaz B,Jarillo-Herrero P and Efetov D et al.Electronic transport and quantum hall effect in bipolar graphene p-n-p junctions.Phys Rev Lett 2007;99:166804.
    78.Li X,Wang X and Zhang L et al.Chemically derived,ultrasmooth graphene nanoribbon semiconductors.Science 2008;319:1229-32.
    79.Campos-delgado J,Romoherrera JM and Jia X et al.Bulk production of a new form of sp2carbon:crystalline graphene nanoribbons.Nano Lett 2008;8:2773-8.
    80.Jia X and Dresselhaus MS.Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons.Science 2009;323:1701-5.
    81.Acik M and Chabal YJ.Nature of graphene edges:a review.Jpn J Appl Phys2011;50:070101.
    82.Nakada K,Fujita M and Dresselhaus G et al.Edge state in graphene ribbons:nanometer size effect and edge shape dependence.Phys Rev B 1996;54:17954-61.
    83.Son YW,Cohen ML and Louie SG.Energy gaps in graphene nanoribbons.Phys Rev Lett 2006;97:216803.
    84.Canc?ado LG,Pimenta MA and Neves BRA et al.Anisotropy of the Raman spectra of nanographite ribbons.Phys Rev Lett 2004;93:047403.
    85.Jorio A,Dresselhaus G and Dresselhaus MS.Carbon Nanotubes:Advanced Topics in the Synthesis,Structure,Properties and Applications.Berlin:Springer-Verlag,2008.
    86.Panchakarla LS,Govindaraj A and Rao CNR.Nitrogen-and boron-doped double-walled carbon nanotubes.ACS Nano 2007;1:494-500.
    87.Hu J,Ruan X and Chen YP.Thermal conductivity and thermal rectification in graphene nanoribbons:a molecular dynamics study.Nano Lett 2009;9:2730-5.
    88.Ritter KA and Lyding JW.The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons.Nat Mater 2009;8:235-42.
    89.Zhang X,Xin J and Ding F.The edges of graphene.Nanoscale 2013;5:2556-69.
    90.Kim K,Lee Z and Malone BD et al.Multiply folded graphene.Phys Rev B 2011;83:245433.
    91.Shenoy VB,Reddy CD and Ramasubramaniam A et al.Edge-stress-induced warping of graphene sheets and nanoribbons.Phys Rev Lett 2008;101:245501.
    92.Reddy CD,Ramasubramaniam A and Shenoy VB et al.Edge elastic properties of defect-free single-layer graphene sheets.Appl Phys Lett 2009;94:101904.
    93.Zhao H,Min K and Aluru NR.Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension.Nano Lett 2009;9:3012-5.
    94.Wang H and Upmanyu M.Rippling instabilities in suspended nanoribbons.Phys Rev B 2012;86:205411.
    95.Lu Q and Huang R.Excess energy and deformation along free edges of graphene nanoribbons.Phys Rev B 2010;81:155410.
    96.Gan CK and Srolovitz DJ.First-principles study of graphene edge properties and flake shapes.Phys Rev B 2010;81:125445.
    97.Cranford S and Buehler MJ.Twisted and coiled ultralong multilayer graphene ribbons.Modelling Simul Mater Sci Eng 2011;19:054003.
    98.Landau LD and Lifshitz EM.Theory of Elasticity.Oxford:Pergamon Press,1986.
    99.Stuart SJ,Tutei AB and Harrison JA.A reactive potential for hydrocarbons with intermolecular interactions.J Chem Phys 2000;112:6472-86.
    100.Plimpton SJ.Fast parallel algorithms for short-range molecular dynamics.JComput Phys 1995;117:1-19.
    101.Garcia-Sanchez D,van der Zande AM and Paulo AS et al.Imaging mechanical vibrations in suspended graphene sheets.Nano Lett 2008;8:1399-403.
    102.Lu Q and Huang R.Excess energy and deformation along free edges of graphene nanoribbons.Phys Rev B 2010;81:155410.
    103.Dewapriya MAN,Phani AS and Rajapakse RKND.Influence of temperature and free edges on the mechanical properties of graphene.Modelling Simul Mater Sci Eng 2013;21:2848-55.
    104.Li F,Cheng HM and Bai S et al.Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes.Appl Phys Lett 2000;77:3161-3.
    105.Demczyk BG,Wang YM and Cumings J et al.Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes.Mater Sci Eng A 2002;334:173-8.
    106.Kumar S and Parks DM.Strain shielding from mechanically activated covalent bond formation during nanoindentation of graphene delays the onset of failure.Nano Lett 2015;15:1503-10.
    107.Wang B,Wu J and Gu X et al.Stable planar single-layer hexagonal silicene under tensile strain and its anomalous Poisson’s ratio.Appl Phys Lett 2014;104:081902.
    108.Kim K,Artyukhov VI and Regan W et al.Ripping graphene:preferred directions.Nano Lett 2012;12:293-7.
    109.Griffith AA.The phenomena of rupture and flow in solids.Phil Trans Roy Soc1921;221:163-98.
    110.Bazant ZP and Planas J.Fracture and Size Effect in Concrete and Other Quasi Brittle Materials.Boca Raton:Taylor&Francis,CRC Press,1998.
    111.Zhang P,Ma L and Fan F et al.Fracture toughness of graphene.Nat Commun2014;5:3782.
    112.Hwangbo Y,Lee CK and Kim SM et al.Fracture characteristics of monolayer cvd-graphene.Sci Rep 2015;4:4439.
    113.Wei X,Xiao S and Li F et al.Comparative fracture toughness of multilayer graphenes and boronitrenes.Nano Lett 2015;15:689-94.
    114.Jhon YI,Jhon YM and Yeom GY et al.Orientation dependence of the fracture behavior of graphene.Carbon 2014;72:619-28.
    115.Araujo PT,Terrones M and Dresselhaus MS.Defects and impurities in graphene-like materials.Mater Today 2012;15:98-109.
    116.Eletskii AV,Iskandarova IM and Knizhnik AA et al.Graphene:fabrication methods and thermophysical properties.Phys-Usp 2011;54:227-58.
    117.Thrower DA.The study of defects in graphite by transmission electron microscopy.In:Walker PL,Jr.(ed.).Chemistry and Physics of Carbon,vol.5.New York:Marcel Dekker,1969,217-320.
    118.Stone AJ and Wales DJ.Theoretical studies of icosahedral C60 and some related species.Chem Phys Lett 1986;128:501-3.
    119.Terrones H,Terrones M and Hern′andez E et al.New metallic allotropes of planar and tubular carbon.Phys Rev Lett 2000;84:1716-9.
    120.Lusk MT and Carr LD.Nanoengineering defect structures on graphene.Phys Rev Lett 2008;100:175503.
    121.Li L,Reich S and Robertson J.Defect energies of graphite:density-functional calculations.Phys Rev B 2005;72:184109.
    122.Terrones M,Botello-M′endez AR and Campos-Delgado J et al.Graphene and graphite nanoribbons:morphology,properties,synthesis,defects and applications Nano Today 2010;5:351-72.
    123.Hashimoto A,Suenaga K and Gloter A et al.Direct evidence for atomic defects in graphene layers.Nature 2004;430:870-3.
    124.Kim K,Coh S and Kisielowski C et al.Atomically perfect torn graphene edges and their reversible reconstruction.Nat Commun 2013;4:2723.
    125.Warner JH,Lee GD and He K et al.Bond length and charge density variations within extended arm chair defects in graphene.ACS Nano 2013;7:9860-6.
    126.Kotakoski J,Krasheninnikov AV and Kaiser U et al.From point defects in graphene to two-dimensional amorphous carbon.Phys Rev Lett 2011;106:105505.
    127.Lahiri J,Lin Y and Bozkurt P et al.An extended defect in graphene as a metallic wire.Nat Nanotechnol 2010;5:326-9.
    128.Jiang DE,Cooper VR and Dai S.Porous graphene as the ultimate membrane for gas separation.Nano Lett 2009;9:4019-24.
    129.Li JCM.Disclination model of high angle grain boundaries.Surf Sci 1972;31:12-26.
    130.Shih KK and Li JCM.Energy of grain boundaries between cusp misorientations.Surf Sci 1975;50:109-24.
    131.Kleman M and Friedel J.Disclinations,dislocations,and continuous defects:a reappraisal.Rev Mod Phys 2008;80:61-115.
    132.Romanov AE and Kolesnikova AL.Application of disclination concept to solid structures.Prog Mater Sci 2009;54:740-69.
    133.Warner JH,Margine ER and Mukai M et al.Dislocation-driven deformations in graphene.Science 2012;337:209-12.
    134.Li X,Cai W and An J et al.Large-area synthesis of high-quality and uniform graphene films on copper foils.Science 2009;324:1312-4.
    135.Kim KS,Zhao Y and Jang H et al.Large-scale pattern growth of graphene films for stretchable transparent electrodes.Nature 2009;457:706-10.
    136.Reina A,Jia X and Ho J et al.Large area,few-layer graphene films on arbitrary substrates by chemical vapor deposition.Nano Lett 2009;9:30-5.
    137.Park S and Ruoff RS.Chemical methods for the production of graphenes.Nat Nanotechnol 2009;4:217-24.
    138.Zhao L,Rim KT and Zhou Het al.The atomic-scale growth of large-area monolayer graphene on single-crystal copper substrates.ar Xiv:1008.3542.
    139.Yu Q,Jauregui LA and Wu W et al.Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition.Nat Mater 2011;10:443-9.
    140.Yazyev OV and Louie SG.Electronic transport in polycrystalline graphene.Nat Mater 2010;9:806-9.
    141.Malola S,H¨akkinen H and Koskinen P.Structural,chemical,and dynamical trends in graphene grain boundaries.Phys Rev B 2010;81:165447.
    142.Cockayne E,Rutter GM and Guisinger NP et al.Grain boundary loops in graphene.Phys Rev B 2011;83:195425.
    143.Kim P.Graphene:across the border.Nat Mater 2010;9:792-3.
    144.Bir′o LP and Lambin P.Grain boundaries in graphene grown by chemical vapor deposition.New J Phys 2013;15:035024.
    145.Seymour M and Provatas N.Structural phase field crystal approach for modeling graphene and other two-dimensional structures.Phys Rev B 2016;93:035447.
    146.Ophus C,Shekhawat A and Rasool HI et al.Large-scale experimental and theoretical study of graphene grain boundary structures.Phys Rev B 2015;92:205402.
    147.Suk JW,Mancevski V and Hao Y et al.Fracture of polycrystalline graphene membranes by in situ nanoindentation in a scanning electron microscope.Phys Status Solidi RRL 2015;9:564-9.
    148.Shekhawat A and Ritchie RO.Toughness and strength of nanocrystalline graphene.Nat Commun 2016;7:10546.
    149.Sha ZD,Quek SS and Pei QX et al.Inverse pseudo Hall-Petch relation in polycrystalline graphene.Sci Rep 2015;4:5991.
    150.Song Z,Artyukhov VI and Yakobson BI et al.Pseudo Hall-Petch strength reduction in polycrystalline graphene.Nano Lett 2013;13:1829-33.
    151.Zhang T,Li X and Kadkhodaei S et al.Flaw insensitive fracture in nanocrystalline graphene.Nano Lett 2012;12:4605-10.
    152.Lin QY,Zeng YH and Liu D et al.Step-by-step fracture of two-layer stacked graphene membranes.ACS Nano 2014;8:10246-51.
    153.Orlikowski D,Nardelli MB and Bernholc J et al.Ad-dimers on strained carbon nanotubes:a new route for quantum dot formation?Phys Rev Lett 1999;83:4132-5.
    154.Lusk MT and Carr LD.Nanoengineering defect structures on graphene.Phys Rev Lett 2008;100:175503.
    155.O’Hern SC,Boutilier MS and Idrobo JC et al.Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes.Nano Lett.2014;14:1234-41.
    156.Radha B,Esfandiar A and Wang FC et al.Molecular transport through capillaries made with atomic-scale precision.Nature 2016;538:222-5.
    157.Liu Y and Yakobson BI.Cones,pringles,and grain boundary landscapes in graphene topology.Nano Lett 2010;10:2178-83.
    158.Bhowmick S and Waghmare UV.Anisotropy of the Stone-Wales defect and warping of graphene nanoribbons:a first-principles analysis.Phys Rev B 2010;81:155416.
    159.Carpio A and Bonilla LL.Periodized discrete elasticity models for defects in graphene.Phys Rev B 2008;78:085406.
    160.Wales DJ.Chemistry,geometry,and defects in two dimensions.ACS Nano2014;8:1081-5.
    161.Wang Y and Crespi VH.Theory of finite-length grain boundaries of controlled misfit angle in two-dimensional materials.Nano Lett 2017;17:5297-303.
    162.Yakobson BI Mechanical relaxation and‘intramolecular plasticity’in carbon nanotubes.Appl Phys Lett 1998;72:918-20.
    163.Ding F,Jiao K and Wu M et al.Pseudoclimb and dislocation dynamics in superplastic nanotubes.Phys Rev Lett 2007;98:075503.
    164.Lee GD,Wang CZ and Yoon E et al.Diffusion,coalescence,and reconstruction of vacancy defects in graphene layers.Phys Rev Lett 2005;95:205501.
    165.Huang JY,Chen S and Ren ZF.Kink formation and motion in carbon nanotubes at high temperatures.Phys Rev Lett 2006;97:075501.
    166.Kotakoski J,Meyer JC and Kurasch S et al.Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation.Phys Rev B 2011;83:245420.
    167.Chen S,Ertekin E and Chrzan DC.Plasticity in carbon nanotubes:cooperative conservative dislocation motion.Phys Rev B 2010;81:155417.
    168.Lehtinen O,Kurasch S and Krasheninnikov AV et al.Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation.Nat Commun2013;4:2098.
    169.Kurasch S,Kotakoski J and Lehtinen O et al.Atom-by-atom observation of grain boundary migration in graphene.Nano Lett 2012;12:3168-73.
    170.Guisinger NP,Rutter GM and Crain JN et al.Atomic-scale investigation of graphene formation on 6H-Si C(0001).J Vac Sci Technol A 2008;26:932-7.
    171.Bunch JS and Dunn ML.Adhesion mechanics of graphene membranes.Solid State Commun 2012;152:1359-64.
    172.Koenig SP.Graphene membranes:mechanics,adhesion,and gas separations.Ph.D.Thesis.University of Colorado at Boulder.2013.
    173.Peng SY and Wei YJ.On the influence of interfacial properties to the bending rigidity of layered structures.J Mech Phys Solids 2016;92:278-96.
    174.Lu Z and Dunn ML.Van der Waals adhesion of graphene membranes.J Appl Phys 2010;107:044301.
    175.Scharfenberg S,Rocklin DZ and Chialvo C et al.Probing the mechanical properties of graphene using a corrugated elastic substrate.Appl Phys Lett 2011;98:091908.
    176.Zong Z,Chen CL and Dokmeci MR et al.Direct measurement of graphene adhesion on silicon surface by intercalation of nanoparticles.J Appl Phys 2010;107:026104
    177.Yoon T,Shin WC and Kim TY et al.Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process.Nano Lett 2012;12:1448-52.
    178.Scharfenberg S,Mansukhani N and Chialvo C et al.Observation of a snapthrough instability in graphene.Appl Phys Lett 2012;100:021910.
    179.Cerda E and Mahadevan L.Geometry and physics of wrinkling.Phys Rev Lett2003;90:074302.
    180.Liu X,Wang F and Wu H.Anisotropic growth of buckling-driven wrinkles in graphene monolayer.Nanotechnology 2015;26:065701.
    181.Deng B,Pang Z and Chen S et al.Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates.ACS Nano 2017;11:12337-45.
    182.Wang Z and Devel M.Periodic ripples in suspended graphene.Phys Rev B2011;83:125422.
    183.Bao W,Miao F and Chen Z et al.Controlled ripple texturing of suspended graphene and ultrathin graphite membranes.Nat Nanotechnol 2009;4:562-6.
    184.Qin Z,Taylor M and Hwang M et al.Effect of wrinkles on the surface area of graphene:toward the design of nanoelectronics.Nano Lett 2014;14:6520-5.
    185.Tapaszt′o L,Dumitric?a T and Kim SJ et al.Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene.Nat.Phys 2012;8:739-42.
    186.Geim AK and Grigorieva IV.Van der Waals heterostructures.Nature 2013;499:419-25.
    187.Ruoff RS,Tersoff J and Lorents DC et al.Radial deformation of carbon nanotubes by van der waals forces.Nature 1993;364:514-6.
    188.Dappe YJ,Basanta MA and Flores F et al.Weak chemical interaction and van der Waals forces between graphene layers:a combined density functional and intermolecular perturbation theory approach.Phys Rev B 2006;74:205434.
    189.Balandin AA.Phonon engineering in graphene and van der waals materials.MRS Bull 2014;39:817-23.
    190.Kim Y,Cruz SS and Lee K et al.Remote epitaxy through graphene enables two-dimensional material-based layer transfer.Nature 2017;544:340-3.
    191.Dion M,Rydberg H and Schr¨oder E et al.Van der Waals density functional for general geometries.Phys Rev Lett 2004;92:246401.
    192.Harl J and Kresse G.Accurate bulk properties from approximate many-body techniques.Phys Rev Lett 2009;103:056401.
    193.Harl J,Schimka L and Kresse G.Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids.Phys Rev B 2010;81:115126.
    194.Grimme S,Antony J and Ehrlich S et al.A consistent and accurate ab initio parametrization of density functional dispersion correction(DFT-D)for the 94elements H-Pu.J Chem Phys 2010;132:154104.
    195.Grimme S,Ehrlich S and Goerigk L.Effect of the damping function in dispersion corrected density functional theory.J Comput Chem 2011;32:1456-65.
    196.Cooper VR.Van der Waals density functional:an appropriate exchange functional.Phys Rev B 2010;81:161104(R).
    197.Lee K,Murray′ED and Kong L et al.Higher-accuracy van der Waals density functional.Phys Rev B 2010;82:081101.
    198.Berland K and Hyldgaard P.Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional.Phys Rev B2014;89:035412.
    199.Lebedeva IV,Knizhnik AA and Popov AM et al.Interlayer interaction and relative vibrations of bilayer graphene.Phys Chem Chem Phys 2011;13:5687-95.
    200.Ruiz L,Xia W and Meng Z et al.A coarse-grained model for the mechanical behavior of multi-layer graphene.Carbon 2015;82:103-15.
    201.Zhang YY,Wang CM and Cheng Y et al.Mechanical properties of bilayer graphene sheets coupled by sp3bonding.Carbon 2011;49:4511-7.
    202.Dappe YJ,Bolcatto PG and Ortega J et al.Dynamical screening of the van der waals interaction between graphene layers.J Phys:Condens Matter 2012;24:424208.
    203.Hamada I and Otani M.Comparative van der waals density-functional study of graphene on metal surfaces.Phys Rev B Cond Matter 2010;82:557.
    204.Liu Z,Yang J and Grey F et al.Observation of microscale superlubricity in graphite.Phys Rev Lett 2012;108:205503.
    205.Wang G,Dai Z and Wang Y et al.Measuring interlayer shear stress in bilayer graphene.Phys Rev Lett 2017;119:036101.
    206.David N,Tsvi P and Steven W.Statistical Mechanics of Membranes and Surfaces,2nd edn.Singapore/River Edge,NJ:World Scientific Pub,2004.
    207.Qin Z,Jung GS and Kang MJ et al.The mechanics and design of a lightweight three-dimensional graphene assembly.Sci Adv 2017;3:1601536.
    208.Gao HL,Zhu YB and Mao LB et al.Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure.Nat Commun 2016;7:12920.
    209.Ma Y and Chen Y.Three-dimensional graphene networks:synthesis,properties and applications.Natl Sci Rev 2015;2:40-53.
    210.Huang X,Qi X and Boey F et al.Graphene-based composites.Chem Soc Rev2011;41:666-86.
    211.Zhang X,Li Q and Holesinger TG et al.Ultrastrong,stiff,and lightweight carbon-nanotube fibers.Adv Mater 2007;19:4198-201.
    212.Dikin DA,Stankovich S and Zimney EJ et al.Preparation and characterization of graphene oxide paper.Nature 2007;448:457-60.
    213.Kim KH,Oh Y and Islam MF.Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue.Nat Nanotechnol 2012;7:562-6.
    214.Krainyukova NV and Zubarev EN.Carbon honeycomb high capacity storage for gaseous and liquid species.Phys Rev Lett 2016;116:055501.
    215.Pang Z,Gu X and Wei Y et al.Bottom-up design of three-dimensional carbonhoneycomb with superb specific strength and high thermal conductivity.Nano Lett 2017;17:179-85.
    216.Zhu W,Low T and Perebeinos V et al.Structure and electronic transport in graphene wrinkles.Nano Lett 2012;12:3431-6.
    217.Vasi′c B,Zurutuza A and Gaji′c R.Spatial variation of wear and electrical properties across wrinkles in chemical vapour deposition graphene.Carbon 2016;102:304-10.
    218.Zhang YH,Wang B and Zhang HR et al.The distribution of wrinkles and their effects on the oxidation resistance of chemical vapor deposition graphene.Carbon 2014;70:81-6.
    219.Chen S,Li Q and Zhang Q et al.Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping.Nanotechnology 2012;23:365701-4.
    220.Bunch JS,van der Zande AM and Verbridge SS et al.Electromechanical resonators from graphene sheets.Science 2007;315:490-3.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.