固体热-化-力耦合连续介质理论的研究现状与展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Advances and Perspectives of Thermo-Chemo-Mechanically Coupling Continuum Theories for Solids
  • 作者:仲政 ; 张晓龙
  • 英文作者:ZHONG Zheng;ZHANG Xiao-long;School of Science, Harbin Institute of Technology;School of Aerospace Engineering and Applied Mechanics, Tongji University;
  • 关键词:热-化-力多场耦合 ; 非平衡态热力学 ; 本构方程 ; 化学反应 ; 传质 ; 耗散
  • 英文关键词:thermo-chemo-mechanical coupling;;thermodynamics;;constitutive laws;;chemical reaction;;mass transport;;dissipation
  • 中文刊名:SHLX
  • 英文刊名:Chinese Quarterly of Mechanics
  • 机构:哈尔滨工业大学(深圳)理学院;同济大学航空航天与力学学院;
  • 出版日期:2017-12-26 13:22
  • 出版单位:力学季刊
  • 年:2017
  • 期:v.38
  • 基金:国家自然科学基金(11572227);; 深圳市基础研究项目(JCYJ20170307151049286)
  • 语种:中文;
  • 页:SHLX201704001
  • 页数:26
  • CN:04
  • ISSN:31-1829/O3
  • 分类号:5-30
摘要
考虑化学作用的固体多场耦合问题涉及开放系统中多组分物质的复杂动力学过程.这些过程不仅具有不同时空尺度下的多重热力学作用机制,还会引起材料性质的不断变化.深入认识热、化学、力学相互作用下物质与能量的传递和转化方式,合理描述化学反应与固体力学行为的相互影响并建立严密的耦合理论体系,不论是对新型智能材料的功能优化设计,还是对传统材料和结构在耦合场中的性能评估与预测都至关重要,也是当代固体力学发展的一个重要方向.本文针对各领域中广泛存在的固体传热、传质、化学反应和力学行为相互耦合的问题,按照传质-变形耦合问题、反应-变形耦合问题及热-化-力完全耦合问题几种主要类型,介绍了相关连续介质理论建模和求解等方面的研究进展,重点对耦合理论建模中常涉及的几类关键问题进行了深入分析和讨论,并对今后固体热-化-力耦合问题的研究进行了展望.
        The multi-field coupling problems concerning chemical processes of solids involve complex kinetics of interactive material constituents driven by multiple thermodynamic forces in an open system. These processes may behave on different space-time scales and induce the evolution of material properties. The attempts to understand their thermodynamic mechanisms, to elucidate how chemical reactions and mechanical behaviors interact, and to develop theoretical models are vital important, not only for optimization design of material functionalities or prediction of structural performances, but also for development of modern solid mechanics. Within the context of these ubiquitous multi-field problems in diverse applications, this review summarizes the recent advance in theoretical modeling and applications of thermo-chemo-mechanically coupling problems of solids. Published works are reviewed regarding three categories including transport-deformation problems, chemical reaction-deformation problems and fully coupled thermo-chemo-mechanical problems. The critical issues in theoretical modeling are discussed, and some development trends in this area are briefly summarized to provide a theoretical guidance for the related research in the future.
引文
[1]GIBBS J W.The scientific papers of J.Willard Gibbs:Vol.I,Thermodynamics[M].New York:Dover Publications,1961,219-331.
    [2]BIOT M A.General theory of three-dimensional consolidation[J].Journal of Applied Physics,1941,12(2):155-164.
    [3]RICE J R,CLEARY M P.Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents[J].Reviews of Geophysics,1976,14(2):227-241.
    [4]LARCH,EACUTE F,CAHN J W.A linear theory of thermochemical equilibrium of solids under stress[J].Acta Metallurgica,1973,21(8):1051-1063.
    [5]LAI W M,HOU J S,MOW V C.A triphasic theory for the swelling and deformation behaviors of articular cartilage[J].Journal of Biomechanical Engineering,1991,113(3):245-258.
    [6]BOWEN R M.Compressible porous media models by use of the theory of mixtures[J].International Journal of Engineering Science,1982,20(6):697-735.
    [7]TRUESDELL C.Rational thermodynamics[M].New York:Springer-Verlag,1984:1020-1021.
    [8]WEITSMAN Y.Stress assisted diffusion in elastic and viscoelastic materials[J].Journal of the Mechanics and Physics of Solids,1987,35(1):73-94.
    [9]VALAN ON C,ROY A,GRANDIDIER J C.Modelling of coupling between mechanics and water diffusion in bonded assemblies[J].Oil and Gas Science and Technology,2006,61(6):759-764.
    [10]ANAND L.A Cahn-Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations[J].Journal of the Mechanics and Physics of Solids,2012,60(12):1983-2002.
    [11]TANAKA T,FILLMORE D J.Kinetics of swelling of gels[J].Journal of Chemical Physics,1979,70(3):1214-1218.
    [12]DOI M.Gel dynamics[J].Journal of the Physical Society of Japan,2009,78(5):052001.
    [13]DUDA F P,SOUZA A C,FRIED E.A theory for species migration in a finitely strained solid with application to polymer network swelling[J].Journal of the Mechanics and Physics of Solids,2010,58(4):515-529.
    [14]HONG W,ZHAO X,ZHOU J,et al.A theory of coupled diffusion and large deformation in polymeric gels[J].Journal of the Mechanics and Physics of Solids,2008,56(5):1779-1793.
    [15]HONG W,LIU Z,SUO Z.Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load[J].International Journal of Solids and Structures,2009,46(17):3282-3289.
    [16]CHESTER S A.A constitutive model for coupled fluid permeation and large viscoelastic deformation in polymeric gels[J].Soft Matter,2012,8(31):8223-8233.
    [17]CHESTER S A,ANAND L.A coupled theory of fluid permeation and large deformations for elastomeric materials[J].Journal of the Mechanics and Physics of Solids,2010,58(11):1879-1906.
    [18]CHESTER S A,ANAND L.A thermo-mechanically coupled theory for fluid permeation in elastomeric materials:Application to thermally responsive gels[J].Journal of the Mechanics and Physics of Solids,2011,59(10):1978-2006.
    [19]HONG W,ZHAO X,SUO Z.Large deformation and electrochemistry of polyelectrolyte gels[J].Journal of the Mechanics and Physics of Solids,2010,58(4):558-577.
    [20]HONG W,WANG X.Actuation and ion transportation of polyelectrolyte gels[C]//OUNAIES Z,LI J.Behavior and Mechanics of Multifunctional Materials and Composites,2010.
    [21]WALLMERSPERGER T,BALLHAUSE D,KROEPLIN B,et al.Coupled chemo-electro-mechanical simulation of polyelectrolyte gels as actuators and sensors[J].Proceedings of SPIE-The International Society for Optical Engineering,2008,6927:69270Y1-10.
    [22]WALLMERSPERGER T,KROPLIN B,GULCH R W.Coupled chemo-electro-mechanical formulation for ionic polymer gels-numerical and experimental investigations[J].Mechanics of Materials,2004,36(5-6):411-420.
    [23]BOISSONADE J.Oscillatory dynamics induced in polyelectrolyte gels by a non-oscillatory reaction:A model[J].The European Physical Journal E,2009,28(3):337-346.
    [24]YANG Q,QIN Q,MA L,et al.A theoretical model and finite element formulation for coupled thermo-electro-chemo-mechanical media[J].Mechanics of Materials,2010,42(2):148-156.
    [25]PAN Y,ZHONG Z.A nonlinear constitutive model of unidirectional natural fiber reinforced composites considering moisture absorption[J].Journal of the Mechanics and Physics of Solids,2014,69(1):132-142.
    [26]PAN Y,ZHONG Z.The effect of hybridization on moisture absorption and mechanical degradation of natural fiber composites:An analytical approach[J].Composites Science and Technology,2015,110:132-137.
    [27]ANAND L.A derivation of the theory of linear poroelasticity from chemoelasticity[J].Journal of Applied Mechanics,2015,82(11):111005.
    [28]HUYGHE J M,JANSSEN J D.Quadriphasic mechanics of swelling incompressible porous media[J].International Journal of Engineering Science,1997,35(8):793-802.
    [29]FRIJNS A J H,HUYGHE J M,KAASSCHIETER E F,et al.Numerical simulation of deformations and electrical potentials in a cartilage substitute[J].Biorheology,2003,40(1-3):123-131.
    [30]HUYGHE J,JANSSEN J D.Thermo-chemo-electro-mechanical formulation of saturated charged porous solids[J].Transport in Porous Media,1999,34(1-3):129-141.
    [31]HON Y C,LU M W,XUE W M,et al.A new formulation and computation of the triphasic model for mechano-electrochemical mixtures[J].Computational Mechanics,1999,24(3):155-165.
    [32]SUNDARESAN V B,LEO D J.Chemo-mechanical model of biological membranes for actuation mechanisms[J].Smart Structures and Materials,2005,5761:108-118.
    [33]KAASSCHIETER E F,FRIJNS A J H,HUYGHE J M.Mixed finite element modelling of cartilaginous tissues[J].Mathematics and Computers in Simulation,2003,61(3-6):549-560.
    [34]WANG H F.Theory of linear poroelasticity[M].Princeton:Princeton,2000.
    [35]OLIVIER C.Poromechanics[M].West Sussex:John Wiley and Sons,2004.
    [36]COUSSY O.Mechanics and physics of porous solids[M].West Sussex:John Wiley and Sons,2010.
    [37]杨庆生,秦庆华,马连华.多孔介质的热-电-化-力学耦合理论及应用[J].固体力学学报,2010,31(6):587-602.
    [38]CHRISTENSEN J,NEWMAN J.A mathematical model of stress generation and fracture in lithium manganese oxide[J].Electrochemical Society,2006,153(6):A1019-A1030.
    [39]CHRISTENSEN J,NEWMAN J.Stress generation and fracture in lithium insertion materials[J].Journal of Solid State Electrochemistry,2006,10(5):293-319.
    [40]SWAMINATHAN N,QU J,SUN Y.An electrochemomechanical theory of defects in ionic solids.I.Theory[J].Philosophical Magazine,2007,87(11):1705-1721.
    [41]HAFTBARADARAN H,SONG J,CURTIN W A,et al.Continuum and atomistic models of strongly coupled diffusion,stress,and solute concentration[J].Journal of Power Sources,2011,196:361-370.
    [42]HAFTBARADARAN H,QU J.Two-dimensional chemo-elasticity under chemical equilibrium[J].International Journal of Solids and Structures,2015,56-57:126-135.
    [43]GAO X,FANG D,QU J.A chemo-mechanics framework for elastic solids with surface stress[J].Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences,2015,471(2182):20150366.
    [44]HAO F,GAO X,FANG D.Diffusion-induced stresses of electrode nanomaterials in lithium-ion battery:The effects of surface stress[J].Journal of Applied Physics,2012,112(10):103507.
    [45]ZHAO J G,HUNTZ A M.Theoretical analysis of the deflection test used in single-surface oxidation of metallic samples[J].Journal of Materials Science,1984,19(10):3166-3172.
    [46]EVANS H E.Stress effects in high temperature oxidation of metals[J].International Materials Reviews,1995,40(1):1-40.
    [47]PILLING N B,BEDWORTH R E.The oxidation of metals in high temperature[J].Journal of Institute of Metals,1923,29(3):529-582.
    [48]CLARKE D R.Stress generation during high-temperature oxidation of metallic alloys[J].Current Opinion in Solid State and Materials Science,2002,6(3):237-244.
    [49]CLARKE D R.The lateral growth strain accompanying the formation of a thermally grown oxide[J].Acta Materialia,2003,51(5):1393-1407.
    [50]PANICAUD B,GROSSEAU-POUSSARD J L,DINHUT J F.On the growth strain origin and stress evolution prediction during oxidation of metals[J].Applied Surface Science,2005,252(16):5700-5713.
    [51]FAVERGEON J,MONTESIN T,BERTRAND G.Mechano-chemical aspects of high temperature oxidation:A mesoscopic model applied to zirconium alloys[J].Oxidation of Metals,2005,64(3):253-279.
    [52]DONG X,FENG X,HWANG K C.Oxidation stress evolution and relaxation of oxide film/metal substrate system[J].Journal of Applied Physics,2012,112(2):023502.
    [53]HUANG Y,ROSAKIS A J.Extension of Stoney’s formula to non-uniform temperature distributions in thin film/substrate systems.The case of radial symmetry[J].Journal of the Mechanics and Physics of Solids,2005,53(11):2483-2500.
    [54]NGO D,FENG X,HUANG Y,et al.Thin film/substrate systems featuring arbitrary film thickness and misfit strain distributions.Part I:Analysis for obtaining film stress from non-local curvature information[J].International Journal of Solids and Structures,2007,44(6):1745-1754.
    [55]BROWN M A,ROSAKIS A J,FENG X,et al.Thin film/substrate systems featuring arbitrary film thickness and misfit strain distributions.Part II:Experimental validation of the non-local stress/curvature relations[J].International Journal of Solids and Structures,2007,44(6):1755-1767.
    [56]FENG X,HUANG Y,ROSAKIS A J.Multi-layer thin films/substrate system subjected to non-uniform misfit strains[J].International Journal of Solids and Structures,2008,45(13):3688-3698.
    [57]RUAN J L,PEI Y,FANG D.Residual stress analysis in the oxide scale/metal substrate system due to oxidation growth strain and creep deformation[J].Acta Mechanica,2012,223(12):2597-2607.
    [58]RUAN J L,PEI Y,FANG D.On the elastic and creep stress analysis modeling in the oxide scale/metal substrate system due to oxidation growth strain[J].Corrosion Science,2013,66(1):315-323.
    [59]DONG X,FANG X,FENG X,et al.Diffusion and stress coupling effect during oxidation at high temperature[J].Journal of the American Ceramic Society,2013,96(1):44-46.
    [60]SUO Y,SHEN S.General approach on chemistry and stress coupling effects during oxidation[J].Journal of Applied Physics,2013,114(16):164905.
    [61]HU S,SHEN S.Non-equilibrium thermodynamics and variational principles for fully coupled thermal-echanical-chemical processes[J].Acta Mechanica,2013,224(12):2895-2910.
    [62]SUO Y,YANG X,SHEN S.Residual stress analysis due to chemomechanical coupled effect,intrinsic strain and creep deformation during oxidation[J].Oxidation of Metals,2015,84(3):413-427.
    [63]WANG H,SUO Y,SHEN S.Reaction-diffusion-stress coupling effect in inelastic oxide scale during oxidation[J].Oxidation of Metals,2015,83(5):507-519.
    [64]RAMBERT G,JUGLA G,GRANDIDIER J C,et al.A modelling of the direct couplings between heat transfer,mass transport,chemical reactions and mechanical behaviour.Numerical implementation to explosive decompression[J].Composites Part A:Applied Science and Manufacturing,2006,37(4):571-584.
    [65]RAMBERT G,GRANDIDIER J C,AIFANTIS E C.On the direct interactions between heat transfer,mass transport and chemical processes within gradient elasticity[J].European Journal of Mechanics-A/Solids,2007,26(1):68-87.
    [66]TANDON G P,POCHIRAJU K V,SCHOEPPNER G A.Modeling of oxidative development in PMR-15resin[J].Polymer Degradation and Stability,2006,91(8):1861-1869.
    [67]COLIN X,MARAIS C,VERDU J.A new method for predicting the thermal oxidation of thermoset matrices:Application to an amine crosslinked epoxy[J].Polymer Testing,2001,20(7):795-803.
    [68]COLIN X,VERDU J.Strategy for studying thermal oxidation of organic matrix composites[J].Composites Science and Technology,2005,65(3):411-419.
    [69]OLIVIER L,HO N Q,GRANDIDIER J C,et al.Characterization by ultra-micro indentation of an oxidized epoxy polymer:Correlation with the predictions of a kinetic model of oxidation[J].Polymer Degradation and Stability,2008,93(2):489-497.
    [70]OLIVIER L,BAUDET C,BERTHEAU D,et al.Development of experimental,theoretical and numerical tools for studying thermo-oxidation of CFRP composites[J].Composites Part A:Applied Science and Manufacturing,2009,40(8):1008-1016.
    [71]LO C O.Prévision du vieillissement thermo-oxydant de compositesàmatrice organique dédiésàl'aéronautique:Prise en compte des couplages multiphysiques[D].Région Poitou-Charentes:l'Universitéde Poitiers,2008.
    [72]GIGLIOTTI M,OLIVIER L,VU D Q,et al.Local shrinkage and stress induced by thermo-oxidation in composite materials at high temperatures[J].Journal of the Mechanics and Physics of Solids,2011,59(3):696-712.
    [73]GIGLIOTTI M,GRANDIDIER J C.Chemo-mechanics couplings in polymer matrix materials exposed to thermo-oxidative environments[J].Comptes Rendus Mecanique,2010,338(3):164-175.
    [74]GIGLIOTTI M,GRANDIDIER J C,LAFARIE-FRENOT M C.Assessment of chemo-mechanical couplings in polymer matrix materials exposed to thermo-oxidative environments at high temperatures and under tensile loadings[J].Mechanics of Materials,2011,43(8):431-443.
    [75]RAJAGOPAL K R,SRINIVASA A R,WINEMAN A S.On the shear and bending of a degrading polymer beam[J].International Journal of Plasticity,2007,23(9):1618-1636.
    [76]PAN Y,ZHONG Z.A micromechanical model for the mechanical degradation of natural fiber reinforced composites induced by moisture absorption[J].Mechanics of Materials,2015,85:7-15.
    [77]TIAN F,PAN Y,ZHONG Z.A long-term mechanical degradation model of unidirectional natural fiber reinforced composites under hydrothermal ageing[J].Composites Science and Technology,2017,142:156-162.
    [78]HICKENBOTH C R,MOORE J S,WHITE S R,et al.Biasing reaction pathways with mechanical force[J].Nature,2007,446(7134):423-427.
    [79]CRAIG S L.Mechanochemistry:A tour of force[J].Nature,2012,487(7406):176-177.
    [80]DELPH T J.Intrinsic strain in Si O2 thin films[J].Journal of Applied Physics,1998,83(2):786-792.
    [81]BEYER M K,CLAUSEN-SCHAUMANN H.Mechanochemistry:The mechanical activation of covalent bonds[J].Chemical Reviews,2005,36(42):2921-2948.
    [82]JAMES S L,ADAMS C J,BOLM C,et al.Mechanochemistry:Opportunities for new and cleaner synthesis[J].Chemical Society Reviews,2011,41(1):413-447.
    [83]TAKACS L.The historical development of mechanochemistry[J].Chemical Society Reviews,2013,42(18):7649-59.
    [84]WEDER C.Mechanochemistry:Polymers react to stress[J].Nature,2009,459(7243):45-46.
    [85]BRANTLEY J N,WIGGINS K M,BIELAWSKI C W.Unclicking the click:Mechanically facilitated1,3-dipolar cycloreversions[J].Science,2011,333(6049):1606-9.
    [86]王琪,卢灿辉,夏和生.高分子力化学研究进展[J].高分子通报,2013,9:35-49.
    [87]ENCINA M V,LISSI E,SARAS A M,et al.Ultrasonic degradation of polyvinylpyrrolidone:Effect of peroxide linkages[J].Journal of Polymer Science Part C Polymer Letters,1980,18(18):757-760.
    [88]MELVILLE H W,MURRAY A J R.The ultrasonic degradation of polymers[J].Transactions of the Faraday Society,1950,46(11):996-1009.
    [89]CARUSO M M,DAVIS D A,SHEN Q,et al.Mechanically-induced chemical changes in polymeric materials[J].Chemical Reviews,2009,109(11):5755-5798.
    [90]KERSEY F R,AND W C Y,CRAIG S L.Single-molecule force spectroscopy of bimolecular reactions:System homology in the mechanical activation of ligand substitution reactions[J].Journal of the American Chemical Society,2006,128(128):3886-3887.
    [91]PAULUSSE J M J,SIJBESMA R P.Selectivity of mechanochemical chain scission in mixed palladium(II)and platinum(II)coordination polymers[J].Chemical Communications,2008,2008(37):4416.
    [92]CHEN Y,ZHANG H,FANG X,et al.Mechanical activation of mechanophore enhanced by strong hydrogen bonding interactions[J].ACS Macro Letters,2014,3(2):141-145.
    [93]BLACK A L,LENHARDT J M,CRAIG S L.From molecular mechanochemistry to stress-responsive materials[J].Journal of Materials Chemistry,2011,21(6):1655-1663.
    [94]BRANTLEY J N,WIGGINS K M,BIELAWSKI C W.Polymer mechanochemistry:The design and study of mechanophores[J].Polymer International,2013,62(1):2-12.
    [95]KLUKOVICH H M,KEAN Z S,IACONO S T,et al.Mechanically induced scission and subsequent thermal remending of perfluorocyclobutane polymers[J].Journal of the American Chemical Society,2011,133(44):17882-17888.
    [96]LEE C K,DAVIS D A,WHITE S R,et al.Force-induced redistribution of a chemical equilibrium[J].Journal of the American Chemical Society,2016,132(45):16107-11.
    [97]SILBERSTEIN M N,MIN K,CREMAR L D,et al.Modeling mechanophore activation within a crosslinked glassy matrix[J].Journal of Applied Physics,2013,114:3098-3100.
    [98]WANG Q,GOSSWEILER G R,CRAIG S L,et al.Mechanics of mechanochemically responsive elastomers[J].Journal of the Mechanics and Physics of Solids,2015,82:320-344.
    [99]SILBERSTEIN M N,CREMAR L D,BEIERMANN B A,et al.Modeling mechanophore activation within a viscous rubbery network[J].Journal of the Mechanics and Physics of Solids,2014,63(1):141-153.
    [100]KAUZMANN W,EYRING H.The viscous flow of large molecules[J].Journal of the American Chemical Society,1940,62(11):3113-3125.
    [101]TAKAFFOLI M,ZHANG T,PARKS D,et al.Mechanochemically responsive viscoelastic elastomers[J].Journal of Applied Mechanics,2016,83(7):071007-1.
    [102]LOEFFEL K,ANAND L.A chemo-thermo-mechanically coupled theory for elastic-viscoplastic deformation,diffusion,and volumetric swelling due to a chemical reaction[J].International Journal of Plasticity,2011,27(9):1409-1431.
    [103]KUANG Z.Energy and entropy equations in coupled nonequilibrium thermal mechanical diffusive chemical heterogeneous system[J].Science Bulletin,2015,60(10):952-957.
    [104]ZHANG X,ZHONG Z.A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction[J].Journal of the Mechanics and Physics of Solids,2017,107:49-75.
    [105]ZHANG X,ZHONG Z.A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials[J].Science China Physics Mechanics and Astronomy,2017,60(8):084611.
    [106]JOU D,CASAS-V ZQUEZ J,LEBON G.Extended irreversible thermodynamics[M].4th ed.New York:Springer,2014:483.
    [107]GLANSDORFF P,PRIGOGINE I,HILL R N.Thermodynamic theory of structure,stability and fluctuations[J].American Journal of Physics,1973,41(1):147-148.
    [108]COLEMAN B D,GURTIN M E.Thermodynamics with internal state variables[J].Journal of Chemical Physics,1967,47(2):597-613.
    [109]GROOT S R D.Thermodynamics of irreversible processes[M].Amsterdam:North-Holland Publishing Company,1951:667-670.
    [110]KANNAN K,RAJAGOPAL K R.A thermodynamical framework for chemically reacting systems[J].Journal of Applied Mathematics and Physics,2011,62(2):331-363.
    [111]MILLS I,CVITA?T,HOMANN K,et al.IUPAC“quantities,units and symbols in physical chemistry”(The Green Book)[J].Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1988,299(3):385-395.
    [112]BIRKS N,MEIER G H.Introduction to the high temperature oxidation of metals[M].London:Edward Arnold,1983.
    [113]ZHOU H,QU J,CHERKAOUI M.Stress-oxidation interaction in selective oxidation of Cr-Fe alloys[J].Mechanics of Materials,2010,42(1):63-71.
    [114]ALIKO-BEN TEZ A,DOBLAR M,SANZ-HERRERA J A.Chemical-diffusive modeling of the self-healing behavior in concrete[J].International Journal of Solids and Structures,2015,69-70:392-402.
    [115]N’GUYEN T A,LEJEUNES S,EYHERAMENDY D,et al.A thermodynamical framework for the thermo-chemo-mechanical couplings in soft materials at finite strain[J].Mechanics of Materials,2016,95:158-171.
    [116]BLAISZIK B J,KRAMER S L B,OLUGEBEFOLA S C,et al.Self-healing polymers and composites[J].Annual Review of Materials Research,2010,40(1):179-211.
    [117]AMAR M B,GORIELY A.Growth and instability in elastic tissues[J].Journal of the Mechanics and Physics of Solids,2005,53(10):2284-2319.
    [118]KLISCH S M,CHEN S S,SAH R L,et al.A growth mixture theory for cartilage with application to growth-related experiments on cartilage explants[J].Journal of Biomechanical Engineering,2003,125(2):169-179.
    [119]LORET B,SIM ES F M F.A framework for deformation,generalized diffusion,mass transfer and growth in multi-species multi-phase biological tissues[J].European Journal of Mechanics,2005,24(5):757-781.
    [120]JONES G W,CHAPMAN S J.Modeling growth in biological materials[J].SIAM Review,2012,54(1):52-118.
    [121]CHEN Y C,HOGER A.constitutive functions of elastic materials in finite growth and deformation[J].Journal of Elasticity,2000,59(1):175-193.
    [122]ATESHIAN G A.On the theory of reactive mixtures for modeling biological growth[J].Biomechanics and Modeling in Mechanobiology,2007,6(6):423-45.
    [123]DROZDOV A D,KHANINA H.A model for the volumetric growth of a soft tissue[J].Mathematical and Computer Modelling,1997,25(25):11-29.
    [124]COWIN S C.Strain or deformation rate dependent finite growth in soft tissues[J].Journal of Biomechanics,1996,29(5):647-649.
    [125]HUMPHREY J D.Continuum biomechanics of soft biological tissues[J].Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences,2003,459(459):3-46.
    [126]HUMPHREY J D,RAJAGOPAL K R.A constrained mixture model for growth and remodeling of soft tissues[J].Mathematical Models and Methods in Applied Sciences,2011,12(3):407-430.
    [127]GUILLOU A,OGDEN R W.Growth in soft biological tissue and residual stress development[M].Heidelberg:Springer Berlin Heidelberg,2006:47-62.
    [128]KUHL E,MENZEL A,GARIKIPATI K,et al.Mechanics of biological tissue[M].New York:Springer Verlag,2006:77-89.
    [129]AMAR M B,CIARLETTA P.Swelling instability of surface-attached gels as a model of soft tissue growth under geometric constraints[J].Journal of the Mechanics and Physics of Solids,2010,58(7):935-954.
    [130]ZHAO Y,HAN X,LI G,et al.Effect of lateral dimension on the surface wrinkling of a thin film on compliant substrate induced by differential growth/swelling[J].Journal of the Mechanics and Physics of Solids,2015,83:129-145.
    [131]LI B,CAO Y P,FENG X Q,et al.Mechanics of morphological instabilities and surface wrinkling in soft materials:A review[J].Soft Matter,2012,8(21):5728-5745.
    [132]RODRIGUEZ E K,HOGER A,MCCULLOCH A D.Stress-dependent finite growth in soft elastic tissues[J].Journal of Biomechanics,1994,27(4):455-467.
    [133]KARRA S,RAJAGOPAL K R.A model for the thermo-oxidative degradation of polyimides[J].Mechanics of Time-Dependent Materials,2012,16(3):329-342.
    [134]PAN Y,ZHONG Z.Mechanical degradation of natural fiber reinforced composite materials under constrained swelling[J].Journal of Mechanics of Materials and Structures,2015,10(1):79-91.
    [135]PAN Y,ZHONG Z.The effect of hybridization on moisture absorption and mechanical degradation of natural fiber composites:An analytical approach[J].Composites Science and Technology,2015,110(3):132-137.
    [136]PAN Y,ZHONG Z.Micromechanical modeling of the wood cell wall considering moisture absorption[J].Composites Part B Engineering,2016,91:27-35.
    [137]PAN Y,ZHONG Z.Relative humidity and temperature dependence of mechanical degradation of natural fiber composites[J].Science China Physics,Mechanics and Astronomy,2016,59(6):664603.
    [138]LEPECH M D,LI V C.Water permeability of engineered cementitious composites[J].Cement and Concrete Composites,2009,31(10):744-753.
    [139]LI V C,HERBERT E.Robust self-healing concrete for sustainable infrastructure[J].Journal of Advanced Concrete Technology,2012,10(6):207-218.
    [140]YANG Y,LEPECH M D,YANG E H,et al.Autogenous healing of engineered cementitious composites under wet-dry cycles[J].Cement and Concrete Research,2009,39(5):382-390.
    [141]MARY M.CARUSO,DAVID A.DELAFUENTE,VICTOR HO,et al.Solvent-promoted self-healing epoxy materials[J].Macromolecules,2015,40(25):8830-8832.
    [142]TITTELBOOM K V,BELIE N D.Self-healing in cementitious materials-A review[J].Materials,2013,6(6):2182-2217.
    [143]CHEN X,DAM M A,ONO K,et al.A Thermally re-mendable cross-linked polymeric material[J].Science,2002,295(5560):1698-1702.
    [144]KRAJCINOVIC D,LEMAITRE J.Continuum damage mechanics theory and application[M].Vienna:Springer,1987.
    [145]CORMACI M,FURNARI G,PIZZUTO F.Continuum damage-healing mechanics with application to self-healing composites[J].International Journal of Damage Mechanics,2005,14(1):51-81.
    [146]VOYIADJIS G Z,SHOJAEI A,LI G,et al.Continuum damage-healing mechanics with introduction to new healing variables[J].International Journal of Damage Mechanics,2012,21(2):391-414.
    [147]VOYIADJIS G Z,AMIR S,GUOQIANG L I.A thermodynamic consistent damage and healing model for self healing materials[J].International Journal of Plasticity,2011,27(7):1025-1044.
    [148]DARABI M K,AL-RUB R K A,LITTLE D N.A continuum damage mechanics framework for modeling micro-damage healing[J].International Journal of Solids and Structures,2012,49(3-4):492-513.
    [149]HAFTBARADARAN H,QU J.A path-independent integral for fracture of solids under combined electrochemical and mechanical loadings[J].Journal of the Mechanics and Physics of Solids,2014,71:1-14.
    [150]BEKAS D G,TSIRKA K,BALTZIS D,et al.Self-healing materials:A review of advances in materials,evaluation,characterization and monitoring techniques[J].Composites Part B Engineering,2016,87:92-119.
    [151]CHESTER S A,LEO C V D,ANAND L.A finite element implementation of a coupled diffusion-deformation theory for elastomeric gels[J].International Journal of Solids and Structures,2015,52:1-18.
    [152]DUAN Z.Simulation of the transient behavior of gels based on an analogy between diffusion and heat transfer[J].Journal of Applied Mechanics,2013,80(4):369-384.
    [153]ZHANG J,ZHAO X,SUO Z,et al.A finite element method for transient analysis of concurrent large deformation and mass transport in gels[J].Journal of Applied Physics,2009,105(9):093522.
    [154]MARCOMBE R,CAI S,HONG W,et al.A theory of constrained swelling of a p H-sensitive hydrogel[J].Soft Matter,2010,6(4):784-793.
    [155]LIU Z,HONG W,SUO Z,et al.Modeling and simulation of buckling of polymeric membrane thin film gel[J].Computational Materials Science,2010,49(s1):60-64.
    [156]LUCANTONIO A,NARDINOCCHI P,TERESI L.Transient analysis of swelling-induced large deformations in polymer gels[J].Journal of the Mechanics and Physics of Solids,2013,61(1):205-218.
    [157]TOH W,LIU Z,NG T Y,et al.Inhomogeneous large deformation kinetics of polymeric gels[J].International Journal of Applied Mechanics,2013,5(1):1350001.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.