High population and dispersion of pentacoordinated Al~Ⅴ species on the surface of ?ame-made amorphous silica-alumina
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High population and dispersion of pentacoordinated Al~Ⅴ species on the surface of ?ame-made amorphous silica-alumina
  • 作者:Zichun ; Wang ; Yijiao ; Jiang ; Xianfeng ; Yi ; Cuifeng ; Zhou ; Aditya ; Rawal ; James ; Hook ; Zongwen ; Liu ; Feng ; Deng ; Anmin ; Zheng ; Michael ; Hunger ; Alfons ; Baiker ; Jun ; Huang
  • 英文作者:Zichun Wang;Yijiao Jiang;Xianfeng Yi;Cuifeng Zhou;Aditya Rawal;James Hook;Zongwen Liu;Feng Deng;Anmin Zheng;Michael Hunger;Alfons Baiker;Jun Huang;School of Chemical and Biomolecular Engineering & Sydney Nano Institute, The University of Sydney;Department of Engineering, Macquarie University;State Key Laboratory Magnetic Resonance & Atomic Molecular Physics, Wuhan Institute of Physics & Mathematics, Chinese Academy of Sciences;Mark Wainwright Analytical Centre, University of New South Wales;Institute of Chemical Technology, University of Stuttgart;Department of Chemistry and Applied Bioscience, ETH Zürich;
  • 英文关键词:Amorphous silica-alumina;;Pentacoordinated Al~Ⅴ species;;~(27)Al multiple quantum magic-angle-spinning NMR;;H/D exchange
  • 中文刊名:JXTW
  • 英文刊名:科学通报(英文版)
  • 机构:School of Chemical and Biomolecular Engineering & Sydney Nano Institute, The University of Sydney;Department of Engineering, Macquarie University;State Key Laboratory Magnetic Resonance & Atomic Molecular Physics, Wuhan Institute of Physics & Mathematics, Chinese Academy of Sciences;Mark Wainwright Analytical Centre, University of New South Wales;Institute of Chemical Technology, University of Stuttgart;Department of Chemistry and Applied Bioscience, ETH Zürich;
  • 出版日期:2019-04-30
  • 出版单位:Science Bulletin
  • 年:2019
  • 期:v.64
  • 基金:the financial supports by Australian Research Council Discovery Projects (DP150103842);; Discovery Earlier Career Research Project (DE190101618);; the Faculty's MCR Scheme, Energy and Materials Clusters at the University of Sydney;; the support by the National Natural Science Foundation of China (21522310, 21473244 and 21210005)
  • 语种:英文;
  • 页:JXTW201908009
  • 页数:8
  • CN:08
  • ISSN:10-1298/N
  • 分类号:36-43
摘要
Pentacoordinated Al(Al~Ⅴ)species in silica-alumina are promising to promote the formation of acid sites or act as surface defects for tailoring single-atom catalysts.However,pentahedral coordination(Al~Ⅴ)is rarely observed in conventionally prepared silica-alumina.Here,we show that high population and dispersion of Al~Ⅴ species on the surface of amorphous silica-alumina(ASA)can be achieved by means of flame spray pyrolysis.High resolution TEM/EDX,high magnetic-field NMR and DFT calculations are employed to characterize the structure of as-prepared ASAs.Solid-state ~(27)Al multi-quantum MAS NMR experiments show that most of the Al~Ⅴspecies are formed independently from the alumina phase and are accessible for guest molecules on the surface.Upon water adsorption,these Al~Ⅴ species are transformed to Al~Ⅵ species,structurally similar to surface Al~Ⅳ species,as confirmed by DFT calculations.The outstanding catalytic activity of as-synthesized ASA is demonstrated using the in situ H/D exchange reaction with deuterated benzene as an example.The Al~Ⅴ-rich ASA provides a much lower activation energy(~30 kJ/mol)than that reported for zeolite H-ZSM-5(~60 kJ/mol).The superior catalytic performance is attributed to the high Al~Ⅴcontent promoting the surface active sites in ASA.The knowledge gained on the synthesis of Al~Ⅴ-rich ASAs and the nature of aluminum coordination in these materials could pave the way to more efficient silica-alumina based catalysts.
        Pentacoordinated Al(Al~Ⅴ)species in silica-alumina are promising to promote the formation of acid sites or act as surface defects for tailoring single-atom catalysts.However,pentahedral coordination(Al~Ⅴ)is rarely observed in conventionally prepared silica-alumina.Here,we show that high population and dispersion of Al~Ⅴ species on the surface of amorphous silica-alumina(ASA)can be achieved by means of flame spray pyrolysis.High resolution TEM/EDX,high magnetic-field NMR and DFT calculations are employed to characterize the structure of as-prepared ASAs.Solid-state ~(27)Al multi-quantum MAS NMR experiments show that most of the Al~Ⅴspecies are formed independently from the alumina phase and are accessible for guest molecules on the surface.Upon water adsorption,these Al~Ⅴ species are transformed to Al~Ⅵ species,structurally similar to surface Al~Ⅳ species,as confirmed by DFT calculations.The outstanding catalytic activity of as-synthesized ASA is demonstrated using the in situ H/D exchange reaction with deuterated benzene as an example.The Al~Ⅴ-rich ASA provides a much lower activation energy(~30 kJ/mol)than that reported for zeolite H-ZSM-5(~60 kJ/mol).The superior catalytic performance is attributed to the high Al~Ⅴcontent promoting the surface active sites in ASA.The knowledge gained on the synthesis of Al~Ⅴ-rich ASAs and the nature of aluminum coordination in these materials could pave the way to more efficient silica-alumina based catalysts.
引文
[1]Duevel A,Romanova E,Sharifi M,et al.Mechanically induced phase transformation of c-Al2O3into a-Al2O3.Access to structurally disordered cAl2O3with a controllable amount of pentacoordinated Al sites.J Phys Chem C2011;115:22770-80.
    [2]Sepelak V,Duevel A,Wilkening M,et al.Mechanochemical reactions and syntheses of oxides.Chem Soc Rev 2013;42:7507-20.
    [3]Lippmaa E,Samoson A,Magi M.High-resolution aluminum-27 NMR of aluminosilicates.J Am Chem Soc 1986;108:1730-5.
    [4]Chen FR,Davis JG,Fripiat JJ.Aluminum coordination and Lewis acidity in transition aluminas.J Catal 1992;133:263-78.
    [5]Kwak JH,Hu J,Mei D,et al.Coordinatively unsaturated Al3+centers as binding sites for active catalyst phases of platinum on c-Al2O3.Science2009;325:1670-3.
    [6]Kwak JH,Kovarik L,Szanyi J.CO2reduction on supported Ru/Al2O3catalysts:cluster size dependence of product selectivity.ACS Catal 2013;3:2449-55.
    [7]Thomas JM,Saghi Z,Gai PL.Can a single atom serve as the active site in some heterogeneous catalysts?Top Catal 2011;54:588-94.
    [8]Deng H,Yu Y,Liu F,et al.Nature of Ag species on Ag/c-Al2O3:a combined experimental and theoretical study.ACS Catal 2014;4:2776-84.
    [9]Shi L,Deng GM,Li,et al.Al2O3nanosheets rich in pentacoordinate Al3+ions stabilize Pt-Sn clusters for propane dehydrogenation.Angew Chem Int Ed2015;54:13994-8.
    [10]Yang M,Li S,Wang Y,et al.Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides.Science 2014;346:1498-501.
    [11]Lee D,Duong NT,Lafon O,et al.Primostrato solid-state NMR enhanced by dynamic nuclear polarization:pentacoordinated Al3+ions are only located at the surface of hydrated c-alumina.J Phys Chem C 2014;118:25065-76.
    [12]MacKenzie KJD,Temuujin J,Okada K.Thermal decomposition of mechanically activated gibbsite.Thermochim Acta 1999;327:103-8.
    [13]Dewitte BM,Grobet PJ,Uytterhoeven JB.Pentacoordinated aluminum in noncalcined amorphous aluminosilicates,prepared in alkaline and acidmedium.J Phys Chem 1995;99:6961-5.
    [14]Amoureux JP,Fernandez C,Steuernagel S.ZFiltering in MQMAS NMR.J Magn Reson Ser A 1996;123:116-8.
    [15]Massiot D,Fayon F,Capron M,et al.Modelling one-and two-dimensional solid-state NMR spectra.Magn Reson Chem 2002;40:70-6.
    [16]Frisch MJT,Schlegel HB,Scuseria GE,et al.Gaussian 09,revision B.01.Wallingford,CT:Gaussian Inc;2010.
    [17]Cheeseman JR,Trucks GW,Keith TA,et al.A comparison of models for calculating nuclear magnetic resonance shielding tensors.J Chem Phys1996;104:5497-509.
    [18]Yu Z,Li S,Wang Q,et al.Br?nsted/Lewis acid synergy in H-ZSM-5 and H-MORzeolites studied by1H and27Al DQ-MAS solid-state NMR spectroscopy.J Phys Chem C 2011;115:22320-7.
    [19]Huang J,van Vegten N,Jiang Y,et al.Increasing the Br?nsted acidity of flamederived silica/alumina up to zeolitic strength.Angew Chem Int Ed2010;49:7776-81.
    [20]Wang Z,Jiang Y,Baiker A,et al.Efficient acid-catalyzed conversion of phenylglyoxal to mandelates on flame-derived silica/alumina.ACS Catal2013;3:1573-7.
    [21]Reller A,Cocke DL.High resolution transmission electron microscopic(HRTEM)determination of the preferentially exposed faces on c-Al2O3and g-Al2O3.Catal Lett 1989;2:91-5.
    [22]Wang Z,Pokhrel S,Chen M,et al.Palladium-doped silica-alumina catalysts obtained from double-flame FSP for chemoselective hydrogenation of the model aromatic ketone acetophenone.J Catal 2013;302:10-9.
    [23]Nassreddine S,Massin L,Aouine M,et al.Thiotolerant Ir/SiO2-Al2O3bifunctional catalysts:effect of metal-acid site balance on tetralin hydroconversion.J Catal 2011;278:253-65.
    [24]Yu Z,Zheng A,Wang Q,et al.Insights into the dealumination of Zeolite HYrevealed by sensitivity-enhanced27Al DQ-MAS NMR spectroscopy at high field.Angew Chem Int Ed 2010;49:8657-61.
    [25]Frydman L,Harwood JS.Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle-spinning NMR.J Am Chem Soc1995;117:5367-8.
    [26]Jiao J,Kanellopoulos J,Wang W,et al.Characterization of framework and extra-framework aluminum species in non-hydrated zeolites Y by27Al spinecho,high-speed MAS,and MQMAS NMR spectroscopy at B0=9.4 to 17.6 T.Phys Chem Chem Phys 2005;7:3221-6.
    [27]Alemany LB,Steuernagel S,Amoureux JP,et al.Very fast MAS and MQMASNMR studies of the spectroscopically challenging minerals kyanite and andalusite on 400,500,and 800 MHz spectrometers.Solid State Nucl Magn Reson 1999;14:1-18.
    [28]Goldbourt A,Landau MV,Vega S.Characterization of aluminum species in alumina multilayer grafted MCM-41 using27Al FAM(II)-MQMAS NMR.J Phys Chem B 2003;107:724-31.
    [29]Gore KU,Abraham A,Hegde SG,et al.29Si and27Al MAS/3Q-MAS NMR studies of high silica USY zeolites.J Phys Chem B 2002;106:6115-20.
    [30]Jiao J,Kanellopoulos J,Behera B,et al.Effects of adsorbate molecules on the quadrupolar interaction of framework aluminum atoms in dehydrated zeolite H Na-Y..J Phys Chem B 2006;110:13812-8.
    [31]Li SH,Zheng AM,Su YC,et al.Extra-framework aluminium species in hydrated faujasite zeolite as investigated by two-dimensional solid-state NMRspectroscopy and theoretical calculations.Phys Chem Chem Phys2010;12:3895-903.
    [32]Guth JL,Kessler H.Catalysis and zeolites-fundamentals and applications.New York:Springer-Verlag;1999.
    [33]O’Malley K,Gil A,Curtin T.Synthesis of mesoporous aluminophosphates-based materials using various copolymers as templates.Microporous Mesoporous Mater 2014;191:48-58.
    [34]Wouters BH,Chen TH,Grobet PJ.Reversible tetrahedral-octahedral framework aluminum transformation in zeolite Y.J Am Chem Soc 1998;120:11419-25.
    [35]Strobel R,Pratsinis SE.Flame aerosol synthesis of smart nanostructured materials.J Mater Chem 2007;17:4743-56.
    [36]Koirala R,Pratsinis SE,Baiker A.Synthesis of catalytic materials in flames:opportunities and challenges.Chem Soc Rev 2016;45:3053-68.
    [37]Matsumoto A,Chen H,Tsutsumi K,et al.Novel route in the synthesis of MCM-41 containing framework aluminum and its characterization.Microporous Mesoporous Mater 1999;32:55-62.
    [38]Wang Z,Jiang Y,Lafon O,et al.Br?nsted acid sites based on penta-coordinated aluminum species.Nat Commun 2016;7:13820.
    [39]Bourgeatlami E,Massiani P,Direnzo F,et al.Study of the state of aluminum in zeolite-beta.Appl Catal 1991;72:139-52.
    [40]Handzlik J,Grybos R,Tielens F.Isolated chromium(VI)oxide species supported on Al-modified silica:a molecular description.J Phys Chem C2016;120:17594-603.
    [41]Yun D,Yun YS,Kim TY,et al.Mechanistic study of glycerol dehydration on Br?nsted acidic amorphous aluminosilicate.J Catal 2016;341:33-43.
    [42]Chizallet C,Raybaud P.Pseudo-bridging silanols as versatile Br?nsted acid sites of amorphous aluminosilicate surfaces.Angew Chem Int Ed2009;48:2891-3.
    [43]Lam E,Comas-Vives A,Copéret C.Role of coordination number,geometry,and local disorder on27Al NMR chemical shifts and quadrupolar coupling constants:case study with aluminosilicates.J Phys Chem C2017;121:19946-57.
    [44]Huang J,Jiang Y,Marthala VRR,et al.In situ1H MAS NMR investigations of the H/D exchange of alkylaromatic hydrocarbons on zeolites H-Y,La,Na-Y,and H-ZSM-5.Microporous Mesoporous Mater 2007;99:86-90.
    [45]Haw JF.Zeolite acid strength and reaction mechanisms in catalysist.Phys Chem Chem Phys 2002;4:5431-41.
    [46]Beck LW,Xu T,Nicholas JB,et al.Kinetic NMR and density-functional study of benzene H/D exchange in zeolites,the most simple aromatic-substitution.JAm Chem Soc 1995;117:11594-5.
    [47]White JL,Beck LW,Haw JF.Characterization of hydrogen-bonding in zeolites by proton solid-state NMR-spectroscopy.J Am Chem Soc 1992;114:6182-9.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.